首页
学习
活动
专区
圈层
工具
发布

【Python环境】Python中的结构化数据分析利器-Pandas简介

Pandas的名称来自于面板数据(panel data)和python数据分析(data analysis)。...这篇文章会介绍一些Pandas的基本知识,偷了些懒其中采用的例子大部分会来自官方的10分钟学Pandas。我会加上个人的理解,帮助大家记忆和学习。...从列表的字典构建DataFrame,其中嵌套的每个列表(List)代表的是一个列,字典的名字则是列标签。这里要注意的是每个列表中的元素数量应该相同。...dict返回的是dict of dict;list返回的是列表的字典;series返回的是序列的字典;records返回的是字典的列表 查看数据 head和tail方法可以显示DataFrame前N条和后...(可选参数,默认为所有列标签),两个参数既可以是列表也可以是单个字符,如果两个参数都为列表则返回的是DataFrame,否则,则为Series。

16.4K100

针对SAS用户:Python数据分析库pandas

PROC PRINT的输出在此处不显示。 下面的单元格显示的是范围按列的输出。列列表类似于PROC PRINT中的VAR。注意此语法的双方括号。这个例子展示了按列标签切片。按行切片也可以。...它来自Jake VanderPlas的使用数据的基本工具。它显示对象更改“前”和“后”的效果。 ? 为了说明.fillna()方法,请考虑用以下内容来创建DataFrame。 ? ? ? ?...正如你可以从上面的单元格中的示例看到的,.fillna()函数应用于所有的DataFrame单元格。我们可能不希望将df["col2"]中的缺失值值替换为零,因为它们是字符串。...教程, 并且在这个链接下面是pandas Cookbook的链接,来自pandas.pydata.org的pandas 0.19.1文档。 pandas Python数据分析库的主页。...Python数据科学手册,使用数据工作的基本工具,作者Jake VanderPlas。 pandas:Python中的数据处理和分析,来自2013 BYU MCL Bootcamp文档。

15.6K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python数据分析——数据预处理

    示例 【例】请利用python查看上例中sales.csv文件中的数据表的大小,要求返回数据表中行的个数和列的个数。 关键技术:使用pandas库中DataFrame对象的shape()方法。...可以是一个字符串,也可以是一个字符串列表。 axis:指定删除行还是删除列。默认为0,表示删除行;1表示删除列。 index:要删除的行的标签列表或单个标签。...append() 在Python中,append是一个列表对象的方法,用于向列表的末尾添加一个元素。...最后,我们打印修改后的列表,它包含了添加的元素。 iloc() 在Python中,iloc()函数是Pandas库中的一个用于根据索引位置选取数据的函数。...可以是一个字符串,也可以是一个字符串列表。 axis:指定删除行还是删除列。默认为0,表示删除行;1表示删除列。 index:要删除的行的标签列表或单个标签。

    3.5K10

    如何用 Pandas 存取和交换数据?

    df = pd.DataFrame({'text': [str1, str2], 'label': [1, 0]}) df 显示效果如下: ? 好了,数据已经正确存储到 Pandas 里面了。...第二句话,制表符(缩进)也是正确显示了。但是这句话两端,却没有引号。 这么乱七八糟的结果,Pandas 还能够正确读回来吗? 我们试试看。 pd.read_csv('data.csv') ?...我们来读取一下其中的第一个元素好了。 df_list.text.iloc[0][0] 结果显示为: '这' 很好。此时的数据框可以正确存储预处理(分词)的结果。...我们来看看生成的 csv 文件。 ? 在存储的过程中,列表内部,每个元素都用单引号包裹。整体列表的外部,被双引号包裹。 至于分割符嘛,依然是逗号。 看着是不是很正常? 我们来尝试把它读取回来。...原来导出 csv 的时候,原先的分词列表被当成了字符串;导入进来的时候,干脆就是个字符串了。 可是我们需要的是个列表啊,这个字符串怎么用? 来看看 tsv 格式是不是对我们的问题有帮助。

    2.5K20

    Python数据分析之Pandas读写外部数据文件

    *姓名*语文*数学*英语1*陈一*89*90*672*赵二*70*78*903*张三*87*86*794*李四*90*69*845*王五*78*80*69 (3)header:元素为字符串的列表,或布尔型数据...:指定多个需要读取的Sheet,列表的元素可以使索引,也可以是字符串,例如[0, 1, 'Sheet3']表示读取第一张、第二张和名为Sheet3的3张Sheet,返回的数据是以列表元素为键包含数据的DataFrame...也可以是元素为整型的列表,表示选用多行作为表头。...(5)header:是否写入表头,值可以使布尔型或者元素为字符串的列表,默认为True表示写入表头。...(6)index:是否写入行号,值为布尔型,默认为True,当为False时上面图中第一列的行号就不会写入了。 (7)columns:指定需要写入文件的列,值是元素为整型或字符串的列表。

    2.6K10

    一句python,一句R︱列表、元组、字典、数据类型、自定义模块导入(格式、去重)

    Python使用"L"来显示长整型。...#以列表的形式返回字典中的值,返回值的列表中可包含重复元素 D.items() #将所有的字典项以列表方式返回,这些列表中的每一项都来自于(键,值),但是项在返回时并没有特殊的顺序...#以列表的形式返回字典中的值,返回值的列表中可包含重复元素 D.items() #将所有的字典项以列表方式返回,这些列表中的每一项都来自于(键,值),但是项在返回时并没有特殊的顺序...的read_csv #数据导入 df = pd.read_csv('....#数据导出 df.to_csv('uk_rain.csv') #write.csv(df,"uk_rain.csv") 约等于R中的write.csv(df,"uk_rain.csv"),其中df是数据集的名称

    7.8K20

    资源 | 23种Pandas核心操作,你需要过一遍吗?

    选自 Medium 作者:George Seif 机器之心编译 参与:思源 本文转自机器之心,转载需授权 Pandas 是一个 Python 软件库,它提供了大量能使我们快速便捷地处理数据的函数和方法...一般而言,Pandas 是使 Python 成为强大而高效的数据分析环境的重要因素之一。...a table 将 DataFrame 输出到一张表: print(tabulate(print_table, headers=headers)) 当「print_table」是一个列表,其中列表元素还是新的列表...,「headers」为表头字符串组成的列表。...= False) (22)布尔型索引 以下代码将过滤名为「size」的行,并仅显示值等于 5 的行: df[df["size"] == 5] (23)选定特定的值 以下代码将选定「size」列、第一行的值

    3.6K20

    【愚公系列】2023年07月 Pandas数据分析之MultiIndex

    在Pandas中,MultiIndex可以通过以下方式创建: 使用元组列表创建:通过传递每个级别上的唯一值列表的元组列表来创建MultiIndex。...3.类型转换 Pandas(以及Python本身)区分数字和字符串,因此在无法自动检测数据类型时,通常最好将数字转换为字符串: pdi.set_level(df.columns, 0, pdi.get_level...idx=pd.IndexSlice;df.loc [:, idx[:, ’ population ']] 这更符合python风格,但要访问元素,必须使用别名,这有点麻烦(没有别名的代码太长了)。...应用补丁后,在Jupyter单元中简单地写df将显示锁定顺序的所有级别的复选标记。...11.读写多索引dataframe到磁盘 Pandas可以以完全自动化的方式将具有多重索引的DataFrame写入CSV文件:df.to_csv('df.csv ')。

    74310

    python数据分析——数据分类汇总与统计

    假设我们有一个包含学生信息的CSV文件,我们可以使用以下代码将其加载到DataFrame中: df = pd.read_csv('student_data.csv') 在加载数据后,我们可以使用pandas...关键技术:对于由DataFrame产生的GroupBy对象,如果用一个(单个字符串)或一组(字符串数组)列名对其进行索引,就能实现选取部分列进行聚合的目的。...下面是一些有关美国几个州的示例数据,这些州又被分为东部和西部: ['East'] * 4产生了一个列表,包括了['East']中元素的四个拷贝。将这些列表串联起来。...可以是单个列名、多个列名组成的列表或者数组,表示数据透视后的行的唯一标识。 columns:指定数据透视后的列索引。可以是单个列名、多个列名组成的列表或者数组,表示数据透视后的列的唯一标识。...values:指定数据透视后的数值。可以是单个列名或者多个列名组成的列表或者数组,表示数据透视后的数值的来源。

    4.1K10

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    读取外部数据 Excel 和 pandas 都可以从各种来源以各种格式导入数据。 CSV 让我们从 Pandas 测试中加载并显示提示数据集,这是一个 CSV 文件。...限制输出 Excel电子表格程序一次只显示一屏数据,然后允许您滚动,因此实际上没有必要限制输出。在 Pandas 中,您需要更多地考虑控制 DataFrame 的显示方式。...默认情况下,pandas 会截断大型 DataFrame 的输出以显示第一行和最后一行。...按值排序 Excel电子表格中的排序,是通过排序对话框完成的。 pandas 有一个 DataFrame.sort_values() 方法,它需要一个列列表来排序。...=LEN(TRIM(A2)) 您可以使用 Series.str.len() 找到字符串的长度。在 Python 3 中,所有字符串都是 Unicode 字符串。len 包括尾随空格。

    25.3K20

    python数据分析——数据分类汇总与统计

    假设我们有一个包含学生信息的CSV文件,我们可以使用以下代码将其加载到DataFrame中: df = pd.read_csv('student_data.csv') 在加载数据后,我们可以使用pandas...关键技术:对于由DataFrame产生的GroupBy对象,如果用一个(单个字符串)或一组(字符串数组)列名对其进行索引,就能实现选取部分列进行聚合的目的。...如果不想接收GroupBy自动给出的那些列名,那么如果传入的是一个由(name,function)元组组成的列表,则各元组的第一个元素就会用作DataFrame的列名(可以将这种二元元组列表看做一个有序映射...下面是一些有关美国几个州的示例数据,这些州又被分为东部和西部: [‘East’] * 4产生了一个列表,包括了[‘East’]中元素的四个拷贝。将这些列表串联起来。.../01/10,默认采集时间以“天”为单位,请利用Python对数据进行以“周”为单位的采样 【例22】对于上面股票数据集文件stockdata.csv,请利用Python对数据进行以“月”为单位的采样

    3.9K10

    Pandas 2.2 中文官方教程和指南(十·二)

    ## 其他文件格式 pandas 本身仅支持与其表格数据模型清晰映射的有限一组文件格式的 IO。为了将其他文件格式读取和写入 pandas,我们建议使用来自更广泛社区的这些软件包。...如果类似列表,所有元素必须是位置的(即整数索引到文档列)或与用户在 `names` 中提供的列名对应的字符串,或从文档标题行中推断出的列名。如果给定了 `names`,则不考虑文档标题行。...Python 标准编码的完整列表。...如果尝试解析日期字符串列,pandas 将尝试从第一个非 NaN 元素猜测格式,然后使用该格式解析列的其余部分。...读取/写入远程文件 您可以传递一个 URL 给许多 pandas 的 IO 函数来读取或写入远程文件 - 以下示例显示了读取 CSV 文件: df = pd.read_csv("https://download.bls.gov

    2.3K00

    Python 数据分析(PYDA)第三版(三)

    如果您发现在本书或 pandas 库中找不到的数据操作类型,请随时在 Python 邮件列表或 pandas GitHub 网站上分享您的用例。...单个表达式,通常称为regex,是根据正则表达式语言形成的字符串。Python 的内置re模块负责将正则表达式应用于字符串;我将在这里给出一些示例。...来引用替换字符串中的匹配组元素 | pandas 中的字符串函数 清理混乱的数据集以进行分析通常需要大量的字符串操作。...表 7.6: Series 字符串方法的部分列表 方法 描述 cat 逐元素连接字符串,可选分隔符 contains 如果每个字符串包含模式/正则表达式,则返回布尔数组 count 计算模式的出现次数...) startswith 对每个元素等同于 x.startswith(pattern) findall 计算每个字符串的模式/正则表达式的所有出现的列表 get 索引到每个元素(检索第 i 个元素) isalnum

    1.5K00

    【干货日报】用Python做数据分析更加如鱼得水!Pandas必会的方法汇总,建议收藏!

    用Python做数据分析光是掌握numpy和matplotlib可不够,Pandas是必须要掌握的一个重点,numpy虽然能够帮我们处理处理数值型数据,但是这还不够,很多时候,我们的数据除了数值之外,还有字符串...(loc,e) 在loc位置增加一个元素 4 .delete(loc) 删除loc位置处的元素 5 .union(idx) 计算并集 6 .intersection(idx) 计算交集 7 .diff(...:布尔型数组(过滤行)、切片(行切片)、或布尔型DataFrame(根据条件设置值) 2 df.loc[val] 通过标签,选取DataFrame的单个行或一组行 3 df.loc[:,val] 通过标签...8 read_json 读取JSON字符串中的数据 9 read_msgpack 二进制格式编码的pandas数据 10 read_pickle 读取Python pickle格式中存储的任意对象 11...14 read_feather 读取 Feather二进制文件格式 举例:导入CSV或者xlsx文件 df = pd.DataFrame(pd.read_csv('name.csv',header=

    6.3K40

    盘一盘 Python 系列 4 - Pandas (上)

    是 Python 为解决数据分析而创建的,详情看官网 (https://pandas.pydata.org/)。...形式 df2 = pd.read_csv('pd_csv.csv') df2 如果一开始储存 df 的时候用 index=True,你会发现加载完后的 df2 是以下的样子。...情况 1 - df.at['idx_i', 'attr_j'] 情况 2 - df.iat[i, j] Python 里的中括号 [] 会代表很多意思,比如单元素索引,多元素切片,布尔索引等等,因此让...索引单元素的总结图: 3.2 切片 columns 切片单个 columns 切片单个 columns 会返回一个 Series,有以下四种情况。情况 1 用点 ....原因是 Python 会把 df['idx_i'] 当成切片 columns,然后发现属性中没有 'idx_i' 这一个字符,会报错的。 个人建议,只用 loc 和 iloc。

    6.9K52
    领券