首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据架构怎么做流批一体

数据架构怎么做流批一体,是指在数据处理和分析中,将实时流处理和批处理相结合,以便更好地处理和分析数据。这种方法可以帮助企业更快地获取洞察力,并且可以更好地适应不同类型的数据。

在实现流批一体的数据架构时,可以使用诸如Apache Flink、Apache Kafka和Apache Spark等开源技术。这些技术可以帮助企业实现实时数据处理和批处理的无缝衔接,并且可以更好地处理和分析数据。

例如,Apache Flink是一个流处理框架,可以帮助企业实现实时数据处理和分析。Apache Kafka是一个分布式消息系统,可以帮助企业实现实时数据流的传输和存储。Apache Spark是一个大数据处理框架,可以帮助企业实现大规模数据处理和分析。

在腾讯云中,可以使用腾讯云流计算、腾讯云消息队列、腾讯云大数据等产品来实现流批一体的数据架构。腾讯云流计算是一个实时数据处理服务,可以帮助企业实现实时数据处理和分析。腾讯云消息队列是一个分布式消息系统,可以帮助企业实现实时数据流的传输和存储。腾讯云大数据是一个大数据处理服务,可以帮助企业实现大规模数据处理和分析。

总之,在实现流批一体的数据架构时,可以使用诸如Apache Flink、Apache Kafka和Apache Spark等开源技术,并且可以使用腾讯云等云计算服务提供商的相关产品来实现。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

数据架构如何做到一体

; 简述大数据架构发展 Lambda 架构 Lambda 架构是目前影响最深刻的大数据处理架构,它的核心思想是将不可变的数据以追加的方式并行写到处理系统内,随后将相同的计算逻辑分别在系统中实现...融合的 Lambda 架构 针对 Lambda 架构的问题3,计算逻辑需要分别在框架中实现和运行的问题,不少计算引擎已经开始往统一的方向去发展,例如 Spark 和 Flink,从而简化lambda...Kappa架构 Kappa 架构由 Jay Kreps 提出,不同于 Lambda 同时计算计算和计算并合并视图,Kappa 只会通过计算一条的数据链路计算并产生视图。...图4 Kafka + Flink + ElasticSearch的混合分析系统 Lambda plus:Tablestore + Blink 一体处理框架 Lambda plus 是基于 Tablestore...tp 系统低延迟读写更新,同时也提供了索引功能 ad-hoc 查询分析,数据利用率高,容量型表格存储实例也可以保证数据存储成本可控; 计算上,Lambda plus 利用 Blink 一体计算引擎

1.8K21

OnZoom基于Apache Hudi的一体架构实践

架构优化升级 基于以上问题,我们在进行大量技术调研选型及POC之后,我们主要做了如下2部分大的架构优化升级。...2.2 Apache Hudi 我们需要有一种能够兼容S3存储之后,既支持大量数据的批处理又支持增加数据处理的数据湖解决方案。...从而实现一体架构而不是典型的Lambda架构。...hoodie.merge.allow.duplicate.on.inserts 其中:hoodie.combine.before.insert 决定是否对同一次的数据按 recordKey...总结 我司基于Hudi实现一体数据架构上线生产环境已有半年多时间,在引入Hudi之后我们在以下各个方面都带来了一定收益: •成本: 引入Hudi数据湖方案之后,实现了S3数据增量查询和增量更新删除

1.5K40
  • 【赵渝强老师】基于Flink的一体架构

    由于Flink集成了计算和计算,因此可以使用Flink构建一体的系统架构,主要包含数据集成的一体架构、数仓架构一体架构数据湖的一体。...一、数据集成的一体架构  在大数据场景下经常需要数据同步或者数据集成,也就是将数据库中的数据同步到大数据的数仓或者其他存储中。...基于Flink一体整个数据集成的架构将不同。...在Flink一体架构的基础上,Flink CDC也是混合的,它可以先读取数据库全量数据同步到数仓中,然后自动切换到增量模式。...数据湖存储与Flink结合,就可以将实时离线一体化的数仓架构演变成实时离线一体化的数据架构数据湖的一体架构如下图所示。  视频讲解如下:

    17910

    Dlink + FlinkSQL构建一体数据平台——部署篇

    摘要:本文介绍了某零售企业用户基于 Dlink + FlinkSQL 构建一体数据平台的实践,主要为部署的分享。...地址 https://github.com/DataLinkDC/dlink 欢迎大家关注 Dlink 的发展~ 一、前言 由于公司需求,最近调研了很多的开源项目,最终发现 Dlink 在建立一体数据平台上更满足需求...数据开发的便捷性对于数据平台来说非常重要,决定了项目的建设与运维成本,而 Dlink 提供了 FlinkSQL 与其他 SQL 的开发与调试能力,使数据开发工作达到Hue 的效果,自动提交及创建远程集群的能力降低了使用门槛...这里假设你已经安装了mysql 首先需要创建Dlink的后端数据库,这里以配置文件中默认库创建 #登录mysql mysql -uroot -proot@123 #授权并创建数据库 mysql> grant...3.local 不熟悉的话慎用,并不要执行任务。 三、集群中心 集群中心配置包括: 集群实例 集群配置其中集群实例适用场景为standalone和yarn session以及k8s session。

    6.2K10

    触宝科技基于Apache Hudi的一体架构实践

    •不可控的小文件、空文件问题•数据格式单一,只支持json格式•用户使用成本较高,特征抽取需要不断的Coding•整个架构扩展性较差 为解决上述问题,我们对第一代架构进行了演进和改善,构建了第二代一体架构...2.2 第二代架构 2.2.1 一体平台的构建 首先将数据链路改造为实时架构,将Spark Structured Streaming(下文统一简称SS)与Flink SQL语法统一,同时实现与Flink...SQL语法大体上一致的一体架构,并且做了一些功能上的增强与优化。...新的模型特征处理采用一体架构,上游对接数据源还是Kafka,模型主要有两个诉求 •支持增量读取方式减少模型更新的实效性•利用CDC来实现特征的回补 整个流程如下图 2.2.3 Hudi、Delta...新方案收益 通过链路架构升级,基于Flink/Spark + Hudi的新的一体架构带来了如下收益 •构建在Hudi上的统一架构纯SQL化极大的加速了用户的开发效率•Hudi在COW以及MOR不同场景的优化让用户有了更多的读取方式选择

    1.1K21

    一体数据交换引擎 etl-engine

    计算与计算对比 数据时效性 流式计算实时、低延迟,流式计算适合以“t+0”的形式呈现业务数据计算非实时、高延迟,计算适合以“t+1”的形式呈现业务数据数据特征 流式计算数据一般是动态数据...,数据是随时产生的; 计算数据一般是静态数据数据事先已经存储在各种介质中。...计算应用在离线计算场景,如:数据分析、离线报表等。 运行方式 流式计算的任务是阻塞式的,一直持续运行中。 计算的任务是一次性完成即结束。...,然后将消息与多个维表数据进行各种关联查询,最后输出融合查询结果集到目标源,常用在将多个维表数据与实时消息关联后转换成一个大宽表的场景。...支持对多种类别数据库之间读取的数据进行融合查询。 支持消息数据传输过程中动态产生的数据与多种类型数据库之间的计算查询。 融合查询语法遵循ANSI SQL标准。

    728180

    统一处理处理——Flink一体实现原理

    而Flink专注的是无限流处理,那么他是怎么做到批处理的呢? ?...这两个 API 都是批处理和处理统一的 API,这意味着在无边界的实时数据和有边界的历史记录数据流上,关系型 API 会以相同的语义执行查询,并产生相同的结果。...Table API / SQL 正在以统一的方式成为分析型用例的主要 API。 DataStream API 是数据驱动应用程序和数据管道的主要API。...相反,MapReduce、Tez 和 Spark 是基于的,这意味着数据在通过网络传输之前必须先被写入磁盘。该测试说明,在使用Flink 时,系统空闲时间和磁盘访问操作更少。...因此,Flink 可以用同一个数据处理框架来处理无限数据和有限数据,并且不会牺牲性能。

    3.8K20

    统一处理处理——Flink一体实现原理

    而Flink专注的是无限流处理,那么他是怎么做到批处理的呢? ?...这两个 API 都是批处理和处理统一的 API,这意味着在无边界的实时数据和有边界的历史记录数据流上,关系型 API 会以相同的语义执行查询,并产生相同的结果。...Table API / SQL 正在以统一的方式成为分析型用例的主要 API。 DataStream API 是数据驱动应用程序和数据管道的主要API。...相反,MapReduce、Tez 和 Spark 是基于的,这意味着数据在通过网络传输之前必须先被写入磁盘。该测试说明,在使用Flink 时,系统空闲时间和磁盘访问操作更少。...因此,Flink 可以用同一个数据处理框架来处理无限数据和有限数据,并且不会牺牲性能。

    4.3K41

    Apache Pulsar:灵活的可扩展的一体的系统架构

    以及在一体数据处理需求中,Pulsar的系统架构在性能,扩展性,可用性等方面相对其他传统架构的消息系统的无可比拟的优势。...不仅是消息系统而是数据平台 我们上面讨论了Pulsar的分层架构如何为不同类型的工作负载提供高性能和可扩展性。但是Pulsar的分层架构带来的好处,远远不止这些。...存储无限大小的 存储和计算分离的系统架构,让Pulsar可以被用作数据平台。 这样用户和应用程序可以使用Pulsar并行访问流式计算中的最新数据和批量计算中的历史数据。...因此,Pulsar不仅可以存储当前数据,还可以存储完整的历史数据数据查询和数据分析 对数据整个历史记录的存储能力,使用户可以在其数据上运行各种数据分析工具。...Presto integration with Apache Pulsar Pulsar还可以与其他数据处理引擎进行类似集成,来作为一体数据存储平台,例如Apache Spark或Apache Flink

    2.7K20

    Flink on Hive构建一体数仓

    Flink使用HiveCatalog可以通过或者的方式来处理Hive中的表。...这就意味着Flink既可以作为Hive的一个批处理引擎,也可以通过处理的方式来读写Hive中的表,从而为实时数仓的应用和一体的落地实践奠定了坚实的基础。...Temporal Join最新分区 对于一张随着时间变化的Hive分区表,Flink可以读取该表的数据作为一个无界。...Hive维表JOIN示例 假设维表的数据是通过批处理的方式(比如每天)装载至Hive中,而Kafka中的事实数据需要与该维表进行JOIN,从而构建一个宽表数据,这个时候就可以使用Hive的维表JOIN...在实际应用中,通常有将实时数据与 Hive 维表 join 来构造宽表的需求,Flink提供了Hive维表JOIN,可以简化用户使用的复杂度。

    3.9K42

    Flink一体 | 青训营笔记

    Flink如何做到一体 一体的理念 2020年,阿里巴巴实时计算团队提出“一体”的理念,期望依托Flink框架解决企业数据分析的3个核心问题,理念中包含三个着力点,分别是一套班子、一套系统、...一套班子:统一开发人员角色,现阶段企业数据分析有两个团队,一个团队负责实时开发,一个团队负责离线开发,在一体的理念中,期望促进两个团队的融合。...一体的理念即使用同一套 API、同一套开发范式来实现大数据计算和计算,进而保证处理过程与结果的一致性。...Apache Flink主要从以下模块来实一体化: 1.SQL层:支持bound和unbound数据集的处理; 2.DataStream API层统一,都可以使用DataStream ApI来开发...; 3.ScheDuler 层架构统一,支持场景; 4.Failover Recovery层 架构统一,支持场景; 5.Shuffle Service 层架构统一,场景选择不同的Shuffle

    14210

    2021年大数据Flink(十二):一体API Transformation

    l最后, DataStream 还支持与合并对称的拆分操作,即把一个按一定规则拆分为多个(Split 操作),每个是之前的一个子集,这样我们就可以对不同的作不同的处理。...,并生成同类型的数据,即可以将多个DataStream[T]合并为一个新的DataStream[T]。...connect: connect提供了和union类似的功能,用来连接两个数据,它与union的区别在于: connect只能连接两个数据,union可以连接多个数据。...connect所连接的两个数据数据类型可以不一致,union所连接的两个数据数据类型必须一致。...两个DataStream经过connect之后被转化为ConnectedStreams,ConnectedStreams会对两个数据应用不同的处理方法,且双流之间可以共享状态。

    57620

    2021年大数据Flink(十一):一体API Source

    nc是netcat的简称,原本是用来设置路由器,我们可以利用它向某个端口发送数据 如果没有该命令可以下安装 yum install -y nc 2.使用Flink编写处理应用程序实时统计单词数量 代码实现...API 一般用于学习测试,模拟生成一些数据 Flink还提供了数据源接口,我们实现该接口就可以实现自定义数据源,不同的接口有不同的功能,分类如下: SourceFunction:非并行数据源(并行度只能...:多功能非并行数据源(并行度只能=1)  * ParallelSourceFunction:并行数据源(并行度能够>=1)  * RichParallelSourceFunction:多功能并行数据源(...,要和MySQL中存储的一些规则进行匹配,那么这时候就可以使用Flink自定义数据源从MySQL中读取数据 那么现在先完成一个简单的需求: 从MySQL中实时加载数据 要求MySQL中的数据有变化,也能被实时加载出来...,要和MySQL中存储的一些规则进行匹配,那么这时候就可以使用Flink自定义数据源从MySQL中读取数据  * 那么现在先完成一个简单的需求:  * 从MySQL中实时加载数据  * 要求MySQL中的数据有变化

    75730

    前沿 | 一体的一些想法

    ❝每家数字化企业在目前遇到一体概念的时候,都会对这个概念抱有一些疑问,到底什么是一体?这个概念的来源?这个概念能为用户、开发人员以及企业带来什么样的好处?跟随着博主的理解和脑洞出发吧。...❞ 前言 到底什么是一体的来源?的来源? 为什么要做一体? 从 数据开发的现状出发 探索理想中的一体能力支持 最终到数仓落地 go!!! ? ? ? ? ? ? ?...n 年前的引擎能力(hive 等) 对文件、批量数据处理支持很友好 数据多是小时、天级别延迟 结论:是在式存储、处理引擎能力支持的角度提出的 ? ?...近几年的引擎能力(flink 等) 逐渐对流式数据处理、容错支持更好 数据可以做到秒、分钟级别延迟 结论:是在流式存储、处理引擎能力支持的角度提出的 ? ? ? ? ? ? ?...博主理解的一体更多的是站在平台能力支持的角度上 所以这里重点说明引擎 + 工具链上的期望 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

    2K40

    一体在京东的探索与实践

    01 整体思考 提到一体,不得不提传统的大数据平台 —— Lambda 架构。...通过一套数据链路来同时满足数据处理需求是最理想的情况,即一体。此外我们认为一体还存在一些中间阶段,比如只实现计算的统一或者只实现存储的统一也是有重大意义的。...通过计算统一去降低用户的开发及维护成本,解决数据口径不一致的问题。 在一体技术落地的过程中,面临的挑战可以总结为以下 4 个方面: 首先是数据实时性。...对于同时实现计算统一和存储统一的场景,我们可以将计算的结果直接写入到统一的存储。我们选择了 Iceberg 作为统一的存储,因为它拥有良好的架构设计,比如不会绑定到某一个特定的引擎等。...3.1 案例一 实时通用数据层 RDDM 一体化的建设。

    96641
    领券