流批一体架构逻辑是一种处理实时流数据和批量数据的统一框架,它结合了流处理和批处理的优势,使得数据处理更加高效和灵活。在这种架构中,数据可以同时从实时流和批量数据源中获取,并通过统一的处理逻辑进行处理。这种架构可以应用于各种场景,例如金融风控、实时交通、智能制造等。
在实现流批一体架构时,通常需要考虑以下几个关键因素:
推荐的腾讯云相关产品和产品介绍链接地址:
请注意,虽然本回答中提到了腾讯云相关产品,但是我们并没有提及其他云计算品牌商。
; 简述大数据架构发展 Lambda 架构 Lambda 架构是目前影响最深刻的大数据处理架构,它的核心思想是将不可变的数据以追加的方式并行写到批和流处理系统内,随后将相同的计算逻辑分别在流和批系统中实现...; 存储上,以 HDFS 为代表的master dataset 不支持数据更新,持续更新的数据源只能以定期拷贝全量 snapshot 到 HDFS 的方式保持数据更新,数据延迟和成本比较大; 计算逻辑需要分别在流批框架中实现和运行...流批融合的 Lambda 架构 针对 Lambda 架构的问题3,计算逻辑需要分别在流批框架中实现和运行的问题,不少计算引擎已经开始往流批统一的方向去发展,例如 Spark 和 Flink,从而简化lambda...图4 Kafka + Flink + ElasticSearch的混合分析系统 Lambda plus:Tablestore + Blink 流批一体处理框架 Lambda plus 是基于 Tablestore...表格存储支持用户 tp 系统低延迟读写更新,同时也提供了索引功能 ad-hoc 查询分析,数据利用率高,容量型表格存储实例也可以保证数据存储成本可控; 计算上,Lambda plus 利用 Blink 流批一体计算引擎
架构优化升级 基于以上问题,我们在进行大量技术调研选型及POC之后,我们主要做了如下2部分大的架构优化升级。...2.2 Apache Hudi 我们需要有一种能够兼容S3存储之后,既支持大量数据的批处理又支持增加数据的流处理的数据湖解决方案。...从而实现流批一体架构而不是典型的Lambda架构。...hoodie.parquet.small.file.limit hoodie.merge.allow.duplicate.on.inserts 其中:hoodie.combine.before.insert 决定是否对同一批次的数据按...总结 我司基于Hudi实现流批一体数据湖架构上线生产环境已有半年多时间,在引入Hudi之后我们在以下各个方面都带来了一定收益: •成本: 引入Hudi数据湖方案之后,实现了S3数据增量查询和增量更新删除
由于Flink集成了批计算和流计算,因此可以使用Flink构建流批一体的系统架构,主要包含数据集成的流批一体架构、数仓架构的流批一体架构和数据湖的流批一体。...基于Flink流批一体整个数据集成的架构将不同。...在Flink流批一体架构的基础上,Flink CDC也是流批混合的,它可以先读取数据库全量数据同步到数仓中,然后自动切换到增量模式。...视频讲解如下:二、数仓架构的流批一体架构 &emsp目前主流数仓架构都是一套典型的离线数仓和一套新的实时数仓,但这两套技术栈是分开的。...数据湖存储与Flink结合,就可以将实时离线一体化的数仓架构演变成实时离线一体化的数据湖架构。数据湖的流批一体架构如下图所示。 视频讲解如下:
为解决上述问题,我们对第一代架构进行了演进和改善,构建了第二代批流一体架构(另外该架构升级也是笔者在饿了么进行架构升级的演进路线)。...2.2 第二代架构 2.2.1 批流一体平台的构建 首先将数据链路改造为实时架构,将Spark Structured Streaming(下文统一简称SS)与Flink SQL语法统一,同时实现与Flink...SQL语法大体上一致的批流一体架构,并且做了一些功能上的增强与优化。...新的模型特征处理采用批流一体的架构,上游对接数据源还是Kafka,模型主要有两个诉求 •支持增量读取方式减少模型更新的实效性•利用CDC来实现特征的回补 整个流程如下图 2.2.3 Hudi、Delta...新方案收益 通过链路架构升级,基于Flink/Spark + Hudi的新的流批一体架构带来了如下收益 •构建在Hudi上的批流统一架构纯SQL化极大的加速了用户的开发效率•Hudi在COW以及MOR不同场景的优化让用户有了更多的读取方式选择
批处理是流处理的一种非常特殊的情况。在流处理中,我们为数据定义滑 动窗口或滚动窗口,并且在每次窗口滑动或滚动时生成结果。批处理则不同,我们定义一个全局窗口,所有的记录都属于同一个窗口。...这两个 API 都是批处理和流处理统一的 API,这意味着在无边界的实时数据流和有边界的历史记录数据流上,关系型 API 会以相同的语义执行查询,并产生相同的结果。...Table API / SQL 正在以流批统一的方式成为分析型用例的主要 API。 DataStream API 是数据驱动应用程序和数据管道的主要API。...相反,MapReduce、Tez 和 Spark 是基于批的,这意味着数据在通过网络传输之前必须先被写入磁盘。该测试说明,在使用Flink 时,系统空闲时间和磁盘访问操作更少。...因此,Flink 可以用同一个数据处理框架来处理无限数据流和有限数据流,并且不会牺牲性能。
以及在批流一体的数据处理需求中,Pulsar的系统架构在性能,扩展性,可用性等方面相对其他传统架构的消息系统的无可比拟的优势。...这种以分片为中心的数据存储方式,将主题分区作为一个逻辑概念,分为多个较小的分片,并均匀分布和存储在存储层中。它为Pulsar带来了更好的性能,更灵活的扩展性和更高的可用性。...不仅是消息系统而是流数据平台 我们上面讨论了Pulsar的分层架构如何为不同类型的工作负载提供高性能和可扩展性。但是Pulsar的分层架构带来的好处,远远不止这些。...存储无限大小的流 存储和计算分离的系统架构,让Pulsar可以被用作流数据平台。 这样用户和应用程序可以使用Pulsar并行访问流式计算中的最新数据和批量计算中的历史数据。...Presto integration with Apache Pulsar Pulsar还可以与其他数据处理引擎进行类似集成,来作为批流一体的数据存储平台,例如Apache Spark或Apache Flink
Flink使用HiveCatalog可以通过批或者流的方式来处理Hive中的表。...这就意味着Flink既可以作为Hive的一个批处理引擎,也可以通过流处理的方式来读写Hive中的表,从而为实时数仓的应用和流批一体的落地实践奠定了坚实的基础。...值得注意的是,当以流的方式读取Hive表时,该参数的默认值是1m,即1分钟。当temporal join时,默认的值是60m,即1小时。...Temporal Join最新分区 对于一张随着时间变化的Hive分区表,Flink可以读取该表的数据作为一个无界流。...在实际应用中,通常有将实时数据流与 Hive 维表 join 来构造宽表的需求,Flink提供了Hive维表JOIN,可以简化用户使用的复杂度。
Flink如何做到流批一体 流批一体的理念 2020年,阿里巴巴实时计算团队提出“流批一体”的理念,期望依托Flink框架解决企业数据分析的3个核心问题,理念中包含三个着力点,分别是一套班子、一套系统、...流批一体的理念即使用同一套 API、同一套开发范式来实现大数据的流计算和批计算,进而保证处理过程与结果的一致性。...由于流和批是两套系统,相同的逻辑需要两个团队开发两遍。 数据链路冗余。在很多的场景下,流和批计算内容其实是一致,但是由于是两套系统,所以相同逻辑还是需要运行两遍,产生一定的资源浪费。 数据口径不一致。...Apache Flink主要从以下模块来实流批一体化: 1.SQL层:支持bound和unbound数据集的处理; 2.DataStream API层统一,批和流都可以使用DataStream ApI来开发...; 3.ScheDuler 层架构统一,支持流批场景; 4.Failover Recovery层 架构统一,支持流批场景; 5.Shuffle Service 层架构统一,流批场景选择不同的Shuffle
❝每家数字化企业在目前遇到流批一体概念的时候,都会对这个概念抱有一些疑问,到底什么是流批一体?这个概念的来源?这个概念能为用户、开发人员以及企业带来什么样的好处?跟随着博主的理解和脑洞出发吧。...❞ 前言 到底什么是流批一体? 批的来源?流的来源? 为什么要做流批一体? 从 数据开发的现状出发 探索理想中的流批一体能力支持 最终到数仓落地 go!!! ? ? ? ? ? ? ?...n 年前的引擎能力(hive 等) 对文件、批量数据处理支持很友好 数据多是小时、天级别延迟 结论:批是在批式存储、处理引擎能力支持的角度提出的 ? ?...近几年的引擎能力(flink 等) 逐渐对流式数据处理、容错支持更好 数据可以做到秒、分钟级别延迟 结论:流是在流式存储、处理引擎能力支持的角度提出的 ? ? ? ? ? ? ?...博主理解的流批一体更多的是站在平台能力支持的角度上 所以这里重点说明引擎 + 工具链上的期望 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
01 整体思考 提到流批一体,不得不提传统的大数据平台 —— Lambda 架构。...通过一套数据链路来同时满足流和批的数据处理需求是最理想的情况,即流批一体。此外我们认为流批一体还存在一些中间阶段,比如只实现计算的统一或者只实现存储的统一也是有重大意义的。...对于同时实现计算统一和存储统一的场景,我们可以将计算的结果直接写入到流批统一的存储。我们选择了 Iceberg 作为流批统一的存储,因为它拥有良好的架构设计,比如不会绑定到某一个特定的引擎等。...而在流批一体模式下,开发模式变为了首先完成 SQL 的开发,其中包括逻辑的、物理的 DDL 的定义,以及它们之间的字段映射关系的指定,DML 的编写等,然后分别指定流批任务相关的配置,最后发布成流批两个任务...3.1 案例一 实时通用数据层 RDDM 流批一体化的建设。
在这类 Lambda 架构中,Flink 流批一体主要带来的优势是实现计算统一。通过计算统一去降低用户的开发及维护成本,解决两套系统中计算逻辑和数据口径不一致的问题。...上面介绍的都是 Shopee 内部流批一体应用场景的一些例子,我们内部还有很多团队也正在尝试 Flink 的流批一体,未来会使用的更广泛。...03 与离线生态的完全集成 在流批一体落地的过程中,用户最关心的就是技术架构的改动成本和潜在风险。作为 Flink 平台,面临的一个很重要的挑战就是如何兼容好用户已经广泛应用的离线批处理能力。...04 平台在流批一体上的建设和演进 最后我想介绍一下我们 Flink 平台在流批一体上的建设和演进。其实在上面介绍中,已经展示了不少平台的功能。...我们会加大 Flink 批任务的推广,探索更多流批一体的业务场景。同时跟社区一起,在合适的场景下,加速用户向 SQL 和流批一体的转型。
摘要:本文介绍了某零售企业用户基于 Dlink + FlinkSQL 构建批流一体数据平台的实践,主要为部署的分享。...地址 https://github.com/DataLinkDC/dlink 欢迎大家关注 Dlink 的发展~ 一、前言 由于公司需求,最近调研了很多的开源项目,最终发现 Dlink 在建立批流一体的数据平台上更满足需求...3.local 不熟悉的话慎用,并不要执行流任务。 三、集群中心 集群中心配置包括: 集群实例 集群配置其中集群实例适用场景为standalone和yarn session以及k8s session。
数据湖可以汇集不同数据源(结构化、非结构化,离线批数据、实时流数据)和不同计算引擎(流计算引擎、批处理引擎,交互式分析引擎、机器学习引擎),是未来大数据的发展趋势,目前Hudi、Iceberg和DeltaLake...笔者基于对开源数据湖组件Hudi的研究和理解,思考在Iceberg、DeltaLake和Hudi等开源数据湖组件之上构建批流一体近实时数仓的可能性和思路。...03 批流一体 按照上述思路建设的近实时数仓同时还实现了批流一体:批量任务和流任务存储统一(通过Hudi/Iceberg/DeltaLake等湖组件存储在HDFS上)、计算统一(Flink/Spark作业...)、开发统一(Flink/Spark)、业务逻辑统一(同一套逻辑分为批和流)。...业务需求使用同一套加工逻辑开发代码,按照加工时效的粒度分为批和流两类加工,在统一的数据来源上在同一套计算环境分别进行批量和流式数据加工,四方面的统一保证批任务和流任务的数据结果一致性。
- 随着大数据领域不断发展,企业对于业务场景的诉求也从离线的满足转到高实时性的要求,“t+0”形式呈现业务数据已是刚需。
长期以来,我们一直被告知批处理和流(有界和无界系统)是正交技术——一种参考架构,其中流媒体为数据湖提供养料,仅此而已。...我们希望能够在我们的逻辑中处理批处理源和流媒体源,并拥有工具和 (SQL) 语法来轻松处理它们。我们希望能够以简单的方式轻松整合现有企业数据源和高速/低延迟数据流。...这种架构没有一个花哨的名字——主要是因为它应该一直是这样运作的。因此,CSA 1.4 使构建这些数据产品变得轻而易举。...这不仅可以用于存储某些计算的结果,还可以保持计算的逻辑状态。例如,为您因欺诈而关闭的帐户保留分类帐 - 这样您就不会重新发送未来的请求。要写入接收器,就像定义一个表并将其选择为接收器一样简单。...解锁新的用例和架构 借助 CSA 1.4 提供的新功能,新的用例以及降低延迟和加快上市时间的新功能成为可能。 分布式实时数据仓库——通过物化视图将流数据作为事实与批量数据作为维度进行连接。
流计算与批计算对比 数据时效性 流式计算实时、低延迟,流式计算适合以“t+0”的形式呈现业务数据; 批计算非实时、高延迟,批计算适合以“t+1”的形式呈现业务数据; 数据特征 流式计算数据一般是动态数据...,数据是随时产生的; 批计算数据一般是静态数据,数据事先已经存储在各种介质中。...批计算应用在离线计算场景,如:数据分析、离线报表等。 运行方式 流式计算的任务是阻塞式的,一直持续运行中。 批计算的任务是一次性完成即结束。...,然后将消息流与多个维表数据进行各种关联查询,最后输出融合查询结果集到目标源,常用在将多个维表数据与实时消息流关联后转换成一个大宽表的场景。...支持消息流数据传输过程中动态产生的数据与多种类型数据库之间的流计算查询。 融合查询语法遵循ANSI SQL标准。
table/python/metrics.html 展望后续 在后续版本,易用性仍然是 Flink SQL 的核心主题,比如 schema 的易用性增强,Descriptor API 简化以及更丰富的流
在此基础上希望借助Kappa架构看待数据流批一体的视角去改进Lambda架构,寻找一个实现了Dataflow模型的计算引擎去统一处理批处理层和流处理层的数据计算。...对应到计算代码就是即使主要计算逻辑一致,分组字段中的“时间窗口”也是不同的,所以只能复用主要的计算逻辑,代码并不是完全相同(3)存储和计算层面流批一体,兼具上述两者的优点3.1 存储层面流批一体存储层面流批一体需要有满足上述需求的存储技术支持...3.3 存储及计算层面流批一体实践上述两种对Lambda架构的改进分别只在存储或计算层面做了流和批的统一,而我们的最终目标是希望能够在存储及计算层面均实现流批一体,将整体优势最大化,也才能称之为真正的“...(2)计算层面流批一体,我们的批处理任务和流处理任务在主要计算逻辑上复用了同一份Flink SQL代码,只是在“统计时间窗口”的处理上略有不同,这也是需求所决定而避免不了的,从而不再需要开发两套代码在上述实践的过程中...Lambda架构,分别在存储层面用Iceberg实现流批一体,在计算层面用Flink实现流批一体最后,结合Flink SQL和Iceberg构建流批一体实时湖仓,并在实践中落地了全链路展望未来,我们会在以下方面持续优化和跟进
支持消息流数据传输过程中动态产生的数据与多种类型数据库之间的流计算查询。融合查询语法遵循ANSI SQL标准。...= || IS BETWEEN IN LIKE NOT ANY AND OR INTERSECT UNION EXCEPT EXISTS函数支持逻辑函数COALESCE(value [, value .
领取专属 10元无门槛券
手把手带您无忧上云