数据入湖入仓是指将数据存储在数据湖中,以便进行大规模数据处理和分析。数据湖是一种存储和管理大量数据的方式,它可以存储结构化、半结构化和非结构化数据,并且可以支持实时和批量数据处理。数据湖的优势包括:
数据入湖入仓的应用场景包括:
推荐的腾讯云相关产品和产品介绍链接地址:
摘要:本文介绍了如何使用 Dinky 实时计算平台构建 Flink CDC 整库入仓入湖。内容包括:
Building The Real-time Datalake at ByteDance (00:00:00-00:22:47)
【前言】作为中国的 “Fivetran/Airbyte”, Tapdata Cloud 自去年发布云版公测以来,吸引了近万名用户的注册使用。应社区用户上生产系统的要求,Tapdata Cloud 3.0 将正式推出商业版服务,提供对生产系统的 SLA 支撑。Tapdata 目前专注在实时数据同步和集成领域,核心场景包括以下几大类: √ 实时数据库同步,如 Oracle → Oracle, Oracle → MySQL, MySQL → MySQL 等 √ 数据入湖入仓,或者为现代数据平台供数,如: △ 常规 ETL 任务(建宽表、数据清洗、脱敏等) △ 为 Kafka/MQ/Bitsflow 供数或下推
作者 | 蔡芳芳 过去几年,数据仓库和数据湖方案在快速演进和弥补自身缺陷的同时,二者之间的边界也逐渐淡化。云原生的新一代数据架构不再遵循数据湖或数据仓库的单一经典架构,而是在一定程度上结合二者的优势重新构建。在云厂商和开源技术方案的共同推动之下,2021 年我们将会看到更多“湖仓一体”的实际落地案例。InfoQ 希望通过选题的方式对数据湖和数仓融合架构在不同企业的落地情况、实践过程、改进优化方案等内容进行呈现。本文,InfoQ 采访了 OPPO 云数架构部部长鲍永成,请他与我们分享 OPPO 引入数据湖和数
摘要:本文总结了 Dinky 社区在 Doris Summit 2022 上分享的《Dinky 在Doris实时整库同步和模式演变的探索实践》,其分享主要分为四个章节,内容包括:
主要讲解了技术原理,入门与生产实践,主要功能:全增量一体化数据集成、实时数据入库入仓、最详细的教程。Flink CDC 是Apache Flink的一个重要组件,主要使用了CDC技术从各种数据库中获取变更流并接入到Flink中,Apache Flink作为一款非常优秀的流处理引擎,其SQL API又提供了强大的流式计算能力,因此结合Flink CDC能带来非常广阔的应用场景。例如,Flink CDC可以代替传统的Data X和Canal工具作为实时数据同步,将数据库的全量和增量数据同步到消息队列和数据仓库中。也可以做实时数据集成,将数据库数据实时入湖入仓。还可以做实时物化视图,通过SQL对数据做实时的关联、打宽、聚合,并将物化结果写入到数据湖仓中。
腾讯天穹是协同腾讯内各 BG 大数据能力而生的 Oteam,作为腾讯大数据领域的代名词,旨在拉通大数据各个技术组件,打造一个具有统一技术栈的公司级大数据平台体系。从底层数据接入、数据存储、资源管理、计算引擎、作业调度,到上层数据治理及数据应用等多个环节,支持腾讯内部近 EB 级数据的存储和计算,为业务提供海量、高效、稳定的大数据平台支撑和决策支持。
光阴荏苒,日月如梭,不知不觉间,Dinky 开源已经满满一周年。在这一年里,从思想的火花到实现的落地,再到各种组件与功能的扩展,是数十位贡献者的共同努力的成果,在此感谢各位贡献者与社区伙伴的支持,Dinky 定韶华不负,未来可期。
快手的传统离线链路和很多公司是一致的,基于 Hive做离线分层数仓的建设。在入仓环节和层与层之间是基于 Spark 或者 Hive做清洗加工和计算。这个链路有以下四个痛点:
大数据技术的发展历程中,继数据仓库、数据湖之后,大数据平台的又一革新技术——湖仓一体近年来开始引起业内关注。市场发展催生的数据管理需求一直是数据技术革新的动力。比如数据仓库如何存储不同结构的数据?数据湖又如何避免因为缺乏治理导致的数据杂乱现象?今天的文章想跟大家具体聊聊我们的数栈如何解决这些问题。
数据湖是保存大量原始格式数据的中心位置。与以文件或文件夹形式存储数据的分层数据仓库相比,数据湖采用扁平化架构和对象存储方式来存储数据。对象存储具有元数据标签和唯一标识符,便于跨区域定位和检索数据,提高性能。通过利用廉价的对象存储和开放格式,数据湖使许多应用程序能够利用数据。
传统意义上的数据集市主要处理T+1的数据。随着互联网的发展,当前越来越多的业务场景对于数据时效性提出了更高的要求,以便及时快速地进行数据分析和业务决策,比如依托实时数据情况开展实时推荐、实时风控、实时营销等。特别是各种新技术的出现、发展和日趋成熟,实时数据分析和处理也成为可能。实时的大规模数据处理成为企业数字化转型过程中需要破解的难题,也是企业当前面临的一个普遍需求。
首先我们介绍什么是CDC?CDC的全称是Change data Capture,即变更数据捕获,它是数据库领域非常常见的技术,主要用于捕获数据库的一些变更,然后可以把变更数据发送到下游。它的应用比较广,可以做一些数据同步、数据分发和数据采集,还可以做ETL,今天主要分享的也是把DB数据通过CDC的方式ETL到数据湖。
摘要:本文整理自集度汽车数据部门实时方向负责人、 Apache Flink Contributor 周磊&集度汽车数据开发专家顾云,在 FFA 2022 行业案例专场的分享。本篇内容主要分为四个部分:
本文介绍如何通过 Dinky 整合 Kudu,以支持写 SQL 来实现数据的读取或写入 Kudu。
摘要:本文介绍了 Dinky 功能实践系列的 Flink CDC 整库实时入仓入湖的分析。内容包括:
在数字化转型驱动下,实时化需求日益成为金融业数据应用新常态。传统离线数仓“T+N”数据供给模式,难于满足“T+0”等高时效场景需求;依托Storm、Spark Streaming、Flink等实时计算框架提供“端到端”的实时加工模式,无法沉淀实时数据资产,存在实时数据复用性低、烟囱式垂直建设等不足。
摘要:本文介绍了韩非老师带来的 Dinky 实践系列之 Flink Catalog 元数据管理的分享。内容包括:
随着数字化的概念逐步深入不同领域企业的运营中,业务形态和数字化路径也越来越丰富。这也为企业数据处理、储存的方式提出了更多要求。对于企业,尤其是数据驱动型企业来说,需要强大的解决方案来管理和分析整个组织中的大量数据,这些系统必须具有可伸缩性、可靠性和安全性,并且必须具有足够的灵活性以支持各种数据类型和使用场景。这些要求远远超出了任何传统数据库的能力,因此,数据仓库、数据湖等多种不同的架构逐渐成为了数据库行业的热门技术。
从一体机、超融合到云计算、HTAP,我们不断尝试将多种应用场景融合在一起并试图通过一种技术来解决一类问题,借以达到使用简单高效的目标。现在很热的湖仓一体(Lakehouse)也一样,如果能将数据湖和数据仓库融合在一起就可以同时发挥二者的价值。 数据湖和数据仓库一直以来都有十分密切的联系但同时存在显著的差异。数据湖更注重原始信息的保留,将原始数据“原汁原味”地保存下来是数据湖的首要目标。但原始数据中有很多垃圾数据,原样保留就意味着垃圾数据都要存进数据湖?没错,数据湖就是这样一个数据垃圾场,不管什么样的数据一股
导读:本文主要介绍哔哩哔哩在数据湖与数据仓库一体架构下,探索查询加速以及索引增强的一些实践。主要内容包括:
Apache Hudi是一个基于数据库内核的流式数据湖平台,支持流式工作负载,事务,并发控制,Schema演进与约束;同时支持Spark/Presto/Trino/HIve等生态对接,在数据库内核侧支持可插拔索引的更新,删除,同时会自动管理文件大小,数据Clustering,Compaction,Cleanning等
一、数字化转型面临的痛点问题 1.指标口径不统一 产品部门和财务部门一起开会给老板汇报,APP下单用户数产品1021W,财务1000W,产品说我的数据是数据团队出的,财务说我的也是,那数据为什么不
摘要:本文由社区志愿者陈政羽整理,内容来源自阿里巴巴高级开发工程师徐榜江 (雪尽) 7 月 10 日在北京站 Flink Meetup 分享的《详解 Flink-CDC》。深入讲解了最新发布的 Flink CDC 2.0.0 版本带来的核心特性,包括:全量数据的并发读取、checkpoint、无锁读取等重大改进。
导读:本文将介绍过去15年中,网易大数据团队在应对不断涌现的新需求、新痛点的过程中,逐渐形成的一套逻辑数据湖落地方法。内容分为五部分:
摘要:本文整理自 Apache Flink PMC 李劲松(之信)在 9 月 24 日 Apache Flink Meetup 的分享。主要内容包括:
在当今信息时代,数据被认为是最宝贵的资源之一。企业越来越依赖数据来推动业务决策、改进产品和服务,以及实现创新。因此,构建高效的数据架构变得至关重要。本文将深入探讨如何构建高效的数据湖(Data Lake)并将其与传统数据仓库融合,以满足大规模数据处理的需求。
摘要:本文介绍了安家老师带来的的 Dinky 在 K8S 上进行整库同步的实践分享。内容包括:
数据湖(Data Lake)概念自2011年被推出后,其概念定位、架构设计和相关技术都得到了飞速发展和众多实践,数据湖也从单一数据存储池概念演进为包括 ETL 分析、数据转换及数据处理的下一代基础数据平台。
第一次接触数据湖的时候,我对这个概念也是一知半解,用一个比较形象的例子举例,湖里的水就是各种各样的数据,你舀了一瓶水上来但是不一定干净,有可能混杂着各种各样的杂质,成为能喝的水还要经过一层层过滤和净化。类比到数据湖也是如此,数据湖里有结构化和非结构化的数据,内部数据和外部数据,即原始数据的集合。在业务流程中是指根据业务规则直接产生的数据,数据湖保留了数据的原格式,原则上不对数据进行清洗、加工。
近日,新一代实时数据平台 Tapdata 牵手专注开源 API 管理工具的 Eoapi,发布首款合作插件——导入 Tapdata 数据插件。当强大的数据源连接能力遇上灵活的 API 开发工具,会给用户创造出怎样的惊喜呢?
数据湖是一种存储系统,底层包括不同的文件格式及湖表格式,可存储大量非结构化和半结构化的原始数据。
摘要:本文介绍了打造 Flink + StarRocks + Dinky 的极速统一分析平台经验分享。内容包括:
在构建实时场景的过程中,如何快速、正确的实时同步业务数据是最先面临的问题,本文主要讨论一下如何使用实时处理引擎Apache Flink和数据湖两种技术,来解决业务数据实时入湖的相关问题。两者的结合能良好的支持实时数据落地存储,借助Apache Flink出色的流批一体能力,可以为用户构建一个准实时数仓,满足用户准实时业务探索。
下图是一张非常经典的数据分析技术演进图,从中可一窥整体发展历程。本文将按时间顺序盘点下各阶段产品及技术特点,并预测下未来发展方向。
在构建实时数仓的过程中,如何快速、正确的同步业务数据是最先面临的问题,本文主要讨论一下如何使用实时处理引擎Flink和数据湖Apache Iceberg两种技术,来解决业务数据实时入湖相关的问题。
近日,由深圳市人民政府指导,深圳市南山区人民政府、深圳市科技创新委员会主办,深圳市南山区科技创新局承办,深圳市南山区创新发展促进中心执行的第十四届深创赛之创新南山2022“创业之星”大赛正式公布六大行业赛决赛名单。经过初赛到复赛的激烈角逐与层层选拔,Tapdata 携“实时主数据服务平台”项目从600个参赛者中脱颖而出,成功晋级决赛。
字节跳动早期为了快速支持业务,对于电商流量数据采用Lambda的设计架构,由于当前电商流量数据随着建设的深入和精细化的运营,设计架构的弊端也愈发凸显。
Apache Paimon 最典型的场景是解决了 CDC (Change Data Capture) 数据的入湖;CDC 数据来自数据库。一般来说,分析需求是不会直接查询数据库的。
华米科技是一家基于云的健康服务提供商,拥有全球领先的智能可穿戴技术。在华米科技,数据建设主要围绕两类数据:设备数据和APP数据,这些数据存在延迟上传、更新频率高且广、可删除等特性,基于这些特性,前期数仓ETL主要采取历史全量+增量模式来每日更新数据。随着业务的持续发展,现有数仓基础架构已经难以较好适应数据量的不断增长,带来的显著问题就是成本的不断增长和产出效率的降低。
本文为从大数据到人工智能博主「bajiebajie2333」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
T3出行的杨华和张永旭描述了他们数据湖架构的发展。该架构使用了众多开源技术,包括Apache Hudi和Alluxio。在本文中,您将看到我们如何使用Hudi和Alluxio将数据摄取时间缩短一半。此外,数据分析人员如何使用Presto、Hudi和Alluxio让查询速度提高了10倍。我们基于数据编排为数据管道的多个阶段(包括提取和分析)构建了数据湖。
互联网技术高速发展的背景下,数据已经成为各大公司的最宝贵资源之一。大数据领域经过近十年的高速发展,无论是离线计算还是实时计算、不管是数据仓库还是数据中台都已深入各大公司的各个业务。在复杂业务的背景下,迫切需要一套高效的大数据架构。以数据仓库为例,经过了几次架构升级。其中,首先诞生的一个比较成熟的流批一体架构就是Lambda架构,然后就是升级版的 Kappa 架构。
本文根据冯森在【第十三届中国数据库技术大会(DTCC2022)】线上演讲内容整理而成。
数据湖的起源,应该追溯到 2010 年 10 月。基于对半结构化、非结构化存储的需求,同时为了推广自家的 Pentaho 产品以及 Hadoop,2010 年 Pentaho 的创始人兼 CTO James Dixon 首次提出了数据湖的概念。
摘要:本文由韩公子老师带了 Dinky 实时计算平台从 checkpoint 与 savepoint 自动恢复整库同步作业的实操过程分享。内容包括:
1. 背景 1.1 整体架构 腾讯广告系统中的日志数据流,按照时效性可划分为实时和离线,实时日志通过消息队列供下游消费使用,离线日志需要保存下来,供下游准实时(分钟级)计算任务,离线(小时级/天级/Adhoc)分析处理和问题排查等基于日志的业务场景。因此,我们开发了一系列的日志落地处理模块,包括消息队列订阅 Subscriber,日志合并,自研 dragon 格式日志等,如下图所示: Subscriber:Spark Streaming 任务,消费实时数据,落地到 HDFS,每分钟一个目录,供下游准实时
作者:代来,腾讯 CSIG 工程师 背景 互联网技术高速发展的背景下,数据已经成为各大公司的最宝贵资源之一。大数据领域经过近十年的高速发展,无论是离线计算还是实时计算、不管是数据仓库还是数据中台都已深入各大公司的各个业务。在复杂业务的背景下,迫切需要一套高效的大数据架构。以数据仓库为例,经过了几次架构升级。其中,首先诞生的一个比较成熟的流批一体架构就是 Lambda 架构,然后就是升级版的 Kappa 架构。 对于传统的 Lambda 架构,流与批是两条割裂的链路,维护成本高且容易出现数据不一致的情况。新
领取专属 10元无门槛券
手把手带您无忧上云