获取基于文档ids数组的文档列表可以通过以下步骤实现:
documents
id
id1, id2, id3, ...
腾讯云提供了多种云数据库产品,如云数据库MongoDB、云数据库TDSQL等,可以根据具体需求选择适合的数据库产品。具体产品介绍和文档链接如下:
以上是基于腾讯云的解决方案,其他云计算品牌商也提供类似的云数据库服务和解决方案,可以根据实际需求选择合适的产品。
原生的 Elasticsearch 检索机制没有这个功能。那就意味着,咱们得自己实现。
如果您在运行此模型时遇到任何问题,请重新安装支持此模型的最后一个版本:v4.30.0。您可以通过运行以下命令来执行:pip install -U transformers==4.30.0。
由于涉及 8.X 版本 Elasticsearch 以安全方式的连接,这里需要 python 升级到 3.10+ 版本才可以。
LayoutLM 模型是由 Yiheng Xu,Minghao Li,Lei Cui,Shaohan Huang,Furu Wei 和 Ming Zhou 在论文LayoutLM: Pre-training of Text and Layout for Document Image Understanding中提出的。这是一种简单但有效的文本和布局预训练方法,用于文档图像理解和信息提取任务,如表单理解和收据理解。它在几个下游任务上取得了最先进的结果:
FNet 模型由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 在 FNet: Mixing Tokens with Fourier Transforms 中提出。该模型用傅立叶变换替换了 BERT 模型中的自注意力层,仅返回变换的实部。该模型比 BERT 模型快得多,因为它具有更少的参数并且更节省内存。该模型在 GLUE 基准测试中达到了约 92-97% 的准确率,并且比 BERT 模型训练速度更快。论文的摘要如下:
LayoutLMv3 模型由 Yupan Huang、Tengchao Lv、Lei Cui、Yutong Lu、Furu Wei 在LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking中提出。LayoutLMv3 通过使用补丁嵌入(如 ViT 中的方式)简化了 LayoutLMv2,并在 3 个目标上对模型进行了预训练:掩码语言建模(MLM)、掩码图像建模(MIM)和单词-补丁对齐(WPA)。
CANINE 模型是由 Jonathan H. Clark、Dan Garrette、Iulia Turc、John Wieting 在CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation中提出的。这是第一篇在训练 Transformer 时不使用显式分词步骤(如字节对编码(BPE)、WordPiece 或 SentencePiece)的论文之一。相反,该模型直接在 Unicode 字符级别进行训练。在字符级别进行训练不可避免地会导致更长的序列长度,CANINE 通过高效的下采样策略解决了这个问题,然后应用深度 Transformer 编码器。
MegatronGPT2 模型是由 Mohammad Shoeybi、Mostofa Patwary、Raul Puri、Patrick LeGresley、Jared Casper 和 Bryan Catanzaro 在使用模型并行训练多十亿参数语言模型的 Megatron-LM中提出的。
FLAN-T5 发布在论文扩展指令微调语言模型中 - 这是 T5 的增强版本,已在多种任务中进行微调。
MPNet 模型由 Kaitao Song,Xu Tan,Tao Qin,Jianfeng Lu,Tie-Yan Liu 在MPNet: Masked and Permuted Pre-training for Language Understanding中提出。
X-MOD 模型是由 Jonas Pfeiffer、Naman Goyal、Xi Lin、Xian Li、James Cross、Sebastian Riedel 和 Mikel Artetxe 在Lifting the Curse of Multilinguality by Pre-training Modular Transformers中提出的。X-MOD 扩展了多语言掩码语言模型,如 XLM-R,在预训练期间包含特定于语言的模块化组件(语言适配器)。在微调中,每个 Transformer 层中的语言适配器被冻结。
特征提取器负责为音频或视觉模型准备输入特征。这包括从序列中提取特征,例如,对音频文件进行预处理以生成 Log-Mel Spectrogram 特征,从图像中提取特征,例如,裁剪图像文件,但也包括填充、归一化和转换为 NumPy、PyTorch 和 TensorFlow 张量。
RoBERTa-PreLayerNorm 模型由 Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli 在 fairseq: A Fast, Extensible Toolkit for Sequence Modeling 中提出。它与在 fairseq 中使用 --encoder-normalize-before 标志相同。
DeBERTa 模型是由 Pengcheng He、Xiaodong Liu、Jianfeng Gao、Weizhu Chen 在DeBERTa: Decoding-enhanced BERT with Disentangled Attention中提出的,它基于 2018 年发布的 Google 的 BERT 模型和 2019 年发布的 Facebook 的 RoBERTa 模型。
Whisper 模型由 Alec Radford、Jong Wook Kim、Tao Xu、Greg Brockman、Christine McLeavey、Ilya Sutskever 在通过大规模弱监督实现稳健语音识别中提出。
**免责声明:**如果您看到异常情况,请提交GitHub 问题并指定@patrickvonplaten
SolrCloud是solr对分布式搜索的实现, 分布式搜索主要涉及到两个概念, shard和replica.
CPM 模型是由张政彦、韩旭、周浩、柯培、顾宇贤、叶德明、秦宇佳、苏玉生、季浩哲、关健、齐凡超、王晓智、郑亚楠、曾国阳、曹焕琦、陈胜奇、李代轩、孙振波、刘知远、黄民烈、韩文涛、唐杰、李娟姿、朱小燕、孙茂松在CPM: A Large-scale Generative Chinese Pre-trained Language Model中提出的。
使用数组字面量初始化数组时,可以使用一串逗号来创建空位(hole),es6规范每个空位的值为undefined
在JAVA中,涉及到对数组、Collection等集合类中的元素进行操作的时候,通常会通过循环的方式进行逐个处理,或者使用Stream的方式进行处理。
我想说的是写个解析脚本不是为了模仿着 apktools 造轮子,而是在解析过程中寻找逆向的道路,方法会变,工具会变,但一切都建立在 dex 上的安卓不会变
OpenAI GPT-2 模型是由 Alec Radford、Jeffrey Wu、Rewon Child、David Luan、Dario Amodei 和 Ilya Sutskever 在 OpenAI 提出的,它是一个因果(单向)变压器,使用语言建模在一个大约 40GB 的文本数据语料库上进行预训练。
前段时间是需要查询一张表并对里面的数据去重。collection 表名叫 datatagging,它主要包含 3 个字段 "_id"、"unique_path"、"modified" ,我希望对 unique_path 这个字段去重,并根据 modified 这个日期字段保留最新的一条,返回的结果里必须包含 id。
有些html标签会有name元素,区别于id,name属性的值不必是唯一的,多个元素可能存在相同的名字。
SeamlessM4T-v2 模型是由 Meta AI 的 Seamless Communication 团队在Seamless: Multilingual Expressive and Streaming Speech Translation中提出的。
小程序搜索推送接口: developers.weixin.qq.com/miniprogram…
SpeechEncoderDecoderModel 可用于使用任何预训练语音自编码模型作为编码器(例如 Wav2Vec2,Hubert)和任何预训练自回归模型作为解码器初始化语音到文本模型。
所谓数据埋点就是应用在规定流程中 对特定行为或事件进行数据采集 。使用采集的数据做用户分析和页面分析,可以获得应用的总体使用情况,为后续优化产品和运营提供数据支撑。常见数据埋点内容包括:访问量、停留时长、曝光量、点击量、跳出率等等。
Chroma 是一个开源的嵌入式数据库,通过使知识、事实和技能可以插入到 LLM 中,从而轻松构建 LLM 应用程序。这里可以了解它的工作原理。
我们介绍了 GPT-NeoX-20B,这是一个拥有 200 亿参数的自回归语言模型,经过 Pile 训练,其权重将通过宽松许可证免费向公众开放。据我们所知,这是在提交时具有公开可用权重的最大稠密自回归模型。在这项工作中,我们描述了 GPT-NeoX-20B 的架构和训练,并评估了其在一系列语言理解、数学和基于知识的任务上的性能。我们发现,GPT-NeoX-20B 是一个特别强大的少样本推理器,在进行五次评估时性能提升明显,而与大小相似的 GPT-3 和 FairSeq 模型相比。我们开源了训练和评估代码,以及模型权重,链接为 github.com/EleutherAI/gpt-neox。
这是我自己闲暇之余封装的一个工具,当然还有一大堆BUG,但是对于自己接接小活还是挺方便的,分享出来。后面会慢慢持续更新。
选中多行,获取选中行的所有数据:bootstrapTable(‘getSelections’)
如果连接用户名和密码包含诸如':', '/', '+' 及'@'保留字符,则使用前应该先进行编码,如下:
需要在script里面给这个标签加一个事件,一点击这个按钮,就会获得所选择数据的id 获取复选框数据的id ,将id传到后端
MMS 模型是由 Vineel Pratap、Andros Tjandra、Bowen Shi、Paden Tomasello、Arun Babu、Sayani Kundu、Ali Elkahky、Zhaoheng Ni、Apoorv Vyas、Maryam Fazel-Zarandi、Alexei Baevski、Yossi Adi、Xiaohui Zhang、Wei-Ning Hsu、Alexis Conneau、Michael Auli 在将语音技术扩展到 1000 多种语言中提出的。
步骤2:vue监听机制 watch。如果是true将列表中的所有id添加到批量删除数组中,如果是false赋值空数组
BARThez 模型是由 Moussa Kamal Eddine、Antoine J.-P. Tixier 和 Michalis Vazirgiannis 于 2020 年 10 月 23 日提出的BARThez: a Skilled Pretrained French Sequence-to-Sequence Model。
类似于页面,一个自定义组件由json、wxml、wxss、js四个文件组成
REALM 模型是由 Kelvin Guu、Kenton Lee、Zora Tung、Panupong Pasupat 和 Ming-Wei Chang 在REALM: Retrieval-Augmented Language Model Pre-Training中提出的。这是一个检索增强语言模型,首先从文本知识语料库中检索文档,然后利用检索到的文档来处理问答任务。
CLAP 模型由 Yusong Wu,Ke Chen,Tianyu Zhang,Yuchen Hui,Taylor Berg-Kirkpatrick,Shlomo Dubnov 在大规模对比语言音频预训练与特征融合和关键词到标题增强中提出。
Elasticsearch中的聚合是一种以结构化的方式提取和展示数据的机制。可以把它视为SQL中的GROUP BY语句,但是它更加强大和灵活。
python在人工智能方面可以毫不客气的说,比其他的所有语言都要有优势,因为python的背后有一个非常强大的资源库来支撑着python运作。
Fuyu 模型由ADEPT创建,作者是 Rohan Bavishi、Erich Elsen、Curtis Hawthorne、Maxwell Nye、Augustus Odena、Arushi Somani、Sağnak Taşırlar。
接口说明:添加或更新收货地址,有addressID为更新,没有addressID为添加
Speech2Text2 模型与 Wav2Vec2 一起用于大规模自监督和半监督学习的语音翻译中提出的语音翻译模型,作者为 Changhan Wang,Anne Wu,Juan Pino,Alexei Baevski,Michael Auli,Alexis Conneau。
RoCBert 模型是由 HuiSu、WeiweiShi、XiaoyuShen、XiaoZhou、TuoJi、JiaruiFang、JieZhou 在 RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining 中提出的。它是一个经过预训练的中文语言模型,在各种形式的对抗攻击下具有鲁棒性。
Hugo Touvron、Thibaut Lavril、Gautier Izacard、Xavier Martinet、Marie-Anne Lachaux、Timothée Lacroix、Baptiste Rozière、Naman Goyal、Eric Hambro、Faisal Azhar、Aurelien Rodriguez、Armand Joulin、Edouard Grave、Guillaume Lample 在LLaMA: Open and Efficient Foundation Language Models中提出了 LLaMA 模型。它是一个包含从 7B 到 65B 参数的基础语言模型的集合。
领取专属 10元无门槛券
手把手带您无忧上云