首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在整型列在pyspark中具有不正确的值时返回null

在pyspark中,可以使用whenotherwise函数来处理整型列中不正确的值并返回null。

具体步骤如下:

  1. 导入必要的模块:
代码语言:txt
复制
from pyspark.sql import SparkSession
from pyspark.sql.functions import when
  1. 创建SparkSession对象:
代码语言:txt
复制
spark = SparkSession.builder.getOrCreate()
  1. 加载数据并创建DataFrame:
代码语言:txt
复制
data = [(1, 10), (2, 20), (3, -1), (4, 30), (5, -2)]
df = spark.createDataFrame(data, ["id", "value"])
  1. 使用whenotherwise函数处理整型列中的不正确值:
代码语言:txt
复制
df = df.withColumn("value", when(df.value < 0, None).otherwise(df.value))

在上述代码中,我们使用when函数判断value列中的值是否小于0,如果是,则返回null,否则返回原值。通过otherwise函数指定返回的值。

最后,我们可以查看处理后的DataFrame:

代码语言:txt
复制
df.show()

输出结果:

代码语言:txt
复制
+---+-----+
| id|value|
+---+-----+
|  1|   10|
|  2|   20|
|  3| null|
|  4|   30|
|  5| null|
+---+-----+

这样,当整型列中具有不正确的值时,我们就能返回null来处理这些异常值。

相关搜索:如何返回记录只有当列具有确定的值时才有not null如何在PySpark中查找具有非空值的列集合当特定列在pandas中具有NULL值时选择数据和计数返回在两列中具有相同值,但在另一列中具有不同值的行返回在一列中具有多个唯一值的行如何在postgresql中构建查询,以便在从具有0或null的其他列中提取时间数据类型为null的列值时显示该列的值如何在pyspark dataframe中添加具有最大值的常量列而不进行分组在pandas中搜索列中的列表,如果找到则返回字符串值,如果没有则返回nullSQL -仅返回在左外部连接的特定列中具有重复值的记录在excel中,从一系列行中返回另一列中具有最高值的行的列值。如何在不硬编码列名的情况下,在pyspark dataframe中获取列的唯一值?在Excel中,如何在一列中返回与最大值关联的名称?当一些json类型的列具有一些空属性时,如何避免PySpark from_json在csv读取时返回整个空行在执行Select查询时,如何忽略Postgresql中某列具有特定值的数据行?使用JavaSript时,如何在具有多个值的日期列的表中突出显示“今天”的每个日期在mysql中将多行合并到一列中?当具有不同值的相同ID时当一个数据框的多个列中的值在另一个特定列中具有相同的值时,如何更改这些值?SQL Server -仅返回ID的查询,这些ID在另一列中的每个ID具有不同的值在pyspark中,当使用df.write.partitionBy(..).save时,如何partitionBy某一列的值的一部分?在dataframe中查找具有百分比值的列,并在更改列名时将这些值转换为数字
相关搜索:
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • PySpark 读写 JSON 文件到 DataFrame

    本文中,云朵君将和大家一起学习了如何将具有单行记录和多行记录的 JSON 文件读取到 PySpark DataFrame 中,还要学习一次读取单个和多个文件以及使用不同的保存选项将 JSON 文件写回...文件的功能,在本教程中,您将学习如何读取单个文件、多个文件、目录中的所有文件进入 DataFrame 并使用 Python 示例将 DataFrame 写回 JSON 文件。...NullValues 使用 nullValues 选项,可以将 JSON 中的字符串指定为 null。...例如,如果想考虑一个值为 1900-01-01 的日期列,则在 DataFrame 上设置为 null。...或 error – 这是文件已存在时的默认选项,它返回错误 df2.write.mode('Overwrite') \ .json("/PyDataStudio/spark_output

    1.1K20

    MySQL设计表规范

    】【ip字符串转换成整型】 避免使用text,blob类型,会大大降低SQL执行效率 避免使用ENUM类型,无法使用索引,查询效率低 尽可能把所有列定义为 NOT NULL【实在不行赋予默认值...,如果查询中包含这样的数据,在排序等操作时,就不能使用内存临时表,必须使用磁盘临时表进行。...如果一定要使用,建议把 BLOB 或是 TEXT 列分离到单独的扩展表中,查询时一定不要使用 select * 而只需要取出必要的列,不需要 TEXT 列的数据时不要对该列进行查询。 3....尽可能把所有列定义为 NOT NULL 原因: 索引 NULL 列需要额外的空间来保存,所以要占用更多的空间 进行比较和计算时要对 NULL 值做特别的处理 5....【MySQL 内存临时表不支持 TEXT、BLOB 这样的大数据类型,如果查询中包含这样的数据,在排序等操作时,就不能使用内存临时表,必须使用磁盘临时表进行。

    1.5K10

    PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

    **查询总行数:** 取别名 **查询某列为null的行:** **输出list类型,list中每个元素是Row类:** 查询概况 去重set操作 随机抽样 --- 1.2 列元素操作 --- **获取...随机抽样有两种方式,一种是在HIVE里面查数随机;另一种是在pyspark之中。...根据c3字段中的空格将字段内容进行分割,分割的内容存储在新的字段c3_中,如下所示 jdbcDF.explode( "c3" , "c3_" ){time: String => time.split(...,一列为分组的组名,另一列为行总数 max(*cols) —— 计算每组中一列或多列的最大值 mean(*cols) —— 计算每组中一列或多列的平均值 min(*cols) ——...DataFrame 返回当前DataFrame中不重复的Row记录。

    30.5K10

    独家 | 一文读懂PySpark数据框(附实例)

    人们往往会在一些流行的数据分析语言中用到它,如Python、Scala、以及R。 那么,为什么每个人都经常用到它呢?让我们通过PySpark数据框教程来看看原因。...数据框的特点 数据框实际上是分布式的,这使得它成为一种具有容错能力和高可用性的数据结构。 惰性求值是一种计算策略,只有在使用值的时候才对表达式进行计算,避免了重复计算。...Spark的惰性求值意味着其执行只能被某种行为被触发。在Spark中,惰性求值在数据转换发生时。 数据框实际上是不可变的。由于不可变,意味着它作为对象一旦被创建其状态就不能被改变。...数据框结构 来看一下结构,亦即这个数据框对象的数据结构,我们将用到printSchema方法。这个方法将返回给我们这个数据框对象中的不同的列信息,包括每列的数据类型和其可为空值的限制条件。 3....列名和个数(行和列) 当我们想看一下这个数据框对象的各列名、行数或列数时,我们用以下方法: 4. 描述指定列 如果我们要看一下数据框中某指定列的概要信息,我们会用describe方法。

    6K10

    我攻克的技术难题:大数据小白从0到1用Pyspark和GraphX解析复杂网络数据

    从零开始在本文中,我们将详细介绍如何在Python / pyspark环境中使用graphx进行图计算。...\opt\spark-3.5.0-bin-hadoop3在Windows上使用winutils.exe的Spark在Windows上运行Apache Spark时,确保你已经下载了适用于Spark版本的...当你成功运行后,你应该会看到一些内容输出(请忽略最后可能出现的警告信息)。在启动Spark-shell时,它会自动创建一个Spark上下文的Web UI。...您可以通过从浏览器中打开URL,访问Spark Web UI来监控您的工作。GraphFrames在前面的步骤中,我们已经完成了所有基础设施(环境变量)的配置。...pip install graphframes在继续操作之前,请务必将graphframes对应的jar包安装到spark的jars目录中,以避免在使用graphframes时出现以下错误:java.lang.ClassNotFoundException

    52320

    PySpark SQL——SQL和pd.DataFrame的结合体

    功能也几乎恰是这样,所以如果具有良好的SQL基本功和熟练的pandas运用技巧,学习PySpark SQL会感到非常熟悉和舒适。...:删除指定列 最后,再介绍DataFrame的几个通用的常规方法: withColumn:在创建新列或修改已有列时较为常用,接收两个参数,其中第一个参数为函数执行后的列名(若当前已有则执行修改,否则创建新列...),第二个参数则为该列取值,可以是常数也可以是根据已有列进行某种运算得到,返回值是一个调整了相应列后的新DataFrame # 根据age列创建一个名为ageNew的新列 df.withColumn('...select等价实现,二者的区别和联系是:withColumn是在现有DataFrame基础上增加或修改一列,并返回新的DataFrame(包括原有其他列),适用于仅创建或修改单列;而select准确的讲是筛选新列...,仅仅是在筛选过程中可以通过添加运算或表达式实现创建多个新列,返回一个筛选新列的DataFrame,而且是筛选多少列就返回多少列,适用于同时创建多列的情况(官方文档建议出于性能考虑和防止内存溢出,在创建多列时首选

    10K20

    使用CDSW和运营数据库构建ML应用3:生产ML模型

    公司现在使用这种类型的数据实时通知消费者和员工。这些公司的另一个重要需求是,在实时提供更多数据时,可以轻松地改进其模型。 一种特定的用例是检测欺诈性的信用卡交易。...在HBase和HDFS中训练数据 这是训练数据的基本概述: 如您所见,共有7列,其中5列是传感器读数(温度,湿度比,湿度,CO2,光)。...在此演示中,此训练数据的一半存储在HDFS中,另一半存储在HBase表中。该应用程序首先将HDFS中的数据加载到PySpark DataFrame中,然后将其与其余训练数据一起插入到HBase表中。...该表可以大规模扩展到任何用例,这就是为什么HBase在此应用程序中具有优越性,因为它是分布式、可伸缩的大数据存储。...其次,添加一个功能,当用户确认占用预测正确时,将其添加到训练数据中。 为了模拟实时流数据,我每5秒在Javascript中随机生成一个传感器值。

    2.8K10

    PySpark简介

    什么是PySpark? Apache Spark是一个大数据处理引擎,与MapReduce相比具有多个优势。通过删除Hadoop中的大部分样板代码,Spark提供了更大的简单性。...本指南介绍如何在单个Linode上安装PySpark。PySpark API将通过对文本文件的分析来介绍,通过计算得到每个总统就职演说中使用频率最高的五个词。...RDD的特点是: 不可变性 - 对数据的更改会返回一个新的RDD,而不是修改现有的RDD 分布式 - 数据可以存在于集群中并且可以并行运行 已分区 - 更多分区允许在群集之间分配工作,但是太多分区会在调度中产生不必要的开销...然后,一些PySpark API通过计数等简单操作进行演示。最后,将使用更复杂的方法,如过滤和聚合等函数来计算就职地址中最常用的单词。...返回一个具有相同数量元素的RDD(在本例中为2873)。

    6.9K30

    PySpark 读写 CSV 文件到 DataFrame

    ("path"),在本文中,云朵君将和大家一起学习如何将本地目录中的单个文件、多个文件、所有文件读入 DataFrame,应用一些转换,最后使用 PySpark 示例将 DataFrame 写回 CSV...目录 读取多个 CSV 文件 读取目录中的所有 CSV 文件 读取 CSV 文件时的选项 分隔符(delimiter) 推断模式(inferschema) 标题(header) 引号(quotes) 空值...默认情况下,此选项的值为 False ,并且所有列类型都假定为字符串。...2.5 NullValues 使用 nullValues 选项,可以将 CSV 中的字符串指定为空。例如,如果将"1900-01-01"在 DataFrame 上将值设置为 null 的日期列。...ignore– 当文件已经存在时忽略写操作。 error– 这是一个默认选项,当文件已经存在时,它会返回错误。

    1.1K20

    数据库字段及索引设计规范

    将字符串转换成数字类型存储,如:将 IP 地址转换成整形数据 MySQL 提供了两个方法来处理 ip 地址 inet_aton 把 ip 转为无符号整型 (4-8 位) inet_ntoa 把整型的 ip...对于非负型的数据 (如自增 ID,整型 IP) 来说,要优先使用无符号整型来存储 原因:无符号相对于有符号可以多出一倍的存储空间 SIGNED INT -2147483648~2147483647 UNSIGNED...建议把 BLOB 或是 TEXT 列分离到单独的扩展表中 MySQL 内存临时表不支持 TEXT、BLOB 这样的大数据类型,如果查询中包含这样的数据,在排序等操作时,就不能使用内存临时表,必须使用磁盘临时表进行...如果一定要使用,建议把 BLOB 或是 TEXT 列分离到单独的扩展表中,查询时一定不要使用 select * 而只需要取出必要的列,不需要 TEXT 列的数据时不要对该列进行查询。 b....尽可能把所有列定义为 NOT NULL 原因:索引 NULL 列需要额外的空间来保存,所以要占用更多的空间;进行比较和计算时要对 NULL 值做特别的处理 5.

    1.1K20

    Spark Extracting,transforming,selecting features

    ,也就是分为多少段,比如设置为100,那就是百分位,可能最终桶数小于这个设置的值,这是因为原数据中的所有可能的数值数量不足导致的; NaN值:NaN值在QuantileDiscretizer的Fitting...,可以通过均值或者中位数等对指定未知的缺失值填充,输入特征需要是Float或者Double类型,当前Imputer不支持类别特征和对于包含类别特征的列可能会出现错误数值; 注意:所有输入特征中的null...,输出标签列会被公式中的指定返回变量所创建; 假设我们有一个包含id、country、hour、clicked的DataFrame,如下: id country hour clicked 7 "US"...TopN个特征; percentile:返回卡方测试中的多少比例的Top特征; fpr:返回所有p值小于阈值的特征,它控制选择的false positive比例; fdr:返回false descovery...,如果输入未转换,那么会自动转换,这种情况下,哈希signature作为outputCol被创建; 一个用于展示每个输出行与目标行之间距离的列会被添加到输出数据集中; 注意:当哈希桶中没有足够候选数据点时

    21.9K41

    如何使用Apache Spark MLlib预测电信客户流失

    完整的源代码和输出可在IPython笔记本中找到。该仓库还包含一个脚本,显示如何在CDH群集上启动具有所需依赖关系的IPython笔记本。...我们将使用MLlib来训练和评估一个可以预测用户是否可能流失的随机森林模型。 监督机器学习模型的开发和评估的广泛流程如下所示: 流程从数据集开始,数据集由可能具有多种类型的列组成。...在我们的例子中,数据集是churn_data,这是我们在上面的部分中创建的。然后我们对这些数据进行特征提取,将其转换为一组特征向量和标签。...在我们的例子中,我们会将输入数据中用字符串表示的类型变量,如intl_plan转化为数字,并index(索引)它们。 我们将会选择列的一个子集。...0.5的AUROC(AreaUnderROC,ROC曲线下面积)值意味着你的预测器在两个类别之间的区分性并不比随机猜测更好。值越接近1.0,预测越好。

    4K10

    3万字长文,PySpark入门级学习教程,框架思维

    DataFrame的列操作APIs 这里主要针对的是列进行操作,比如说重命名、排序、空值判断、类型判断等,这里就不展开写demo了,看看语法应该大家都懂了。...(dataType) # 类型转换 Column.cast(dataType) # 强制转换类型 Column.between(lowerBound, upperBound) # 返回布尔值,是否在指定区间范围内...Column.contains(other) # 是否包含某个关键词 Column.endswith(other) # 以什么结束的值,如 df.filter(df.name.endswith('...使用cache()方法时,实际就是使用的这种持久化策略,性能也是最高的。 MEMORY_AND_DISK 优先尝试将数据保存在内存中,如果内存不够存放所有的数据,会将数据写入磁盘文件中。...假如某个节点挂掉,节点的内存或磁盘中的持久化数据丢失了,那么后续对RDD计算时还可以使用该数据在其他节点上的副本。如果没有副本的话,就只能将这些数据从源头处重新计算一遍了。一般也不推荐使用。 2.

    10K21

    在 PySpark 中,如何使用 groupBy() 和 agg() 进行数据聚合操作?

    在 PySpark 中,可以使用groupBy()和agg()方法进行数据聚合操作。groupBy()方法用于按一个或多个列对数据进行分组,而agg()方法用于对分组后的数据进行聚合计算。...以下是一个示例代码,展示了如何在 PySpark 中使用groupBy()和agg()进行数据聚合操作:from pyspark.sql import SparkSessionfrom pyspark.sql.functions...按某一列进行分组:使用 groupBy("column_name1") 方法按 column_name1 列对数据进行分组。进行聚合计算:使用 agg() 方法对分组后的数据进行聚合计算。...在这个示例中,我们计算了 column_name2 的平均值、column_name3 的最大值、column_name4 的最小值和 column_name5 的总和。...avg()、max()、min() 和 sum() 是 PySpark 提供的聚合函数。alias() 方法用于给聚合结果列指定别名。显示聚合结果:使用 result.show() 方法显示聚合结果。

    9810

    PySpark数据计算

    在 PySpark 中,所有的数据计算都是基于 RDD(弹性分布式数据集)对象进行的。RDD 提供了丰富的成员方法(算子)来执行各种数据处理操作。...可以是任意类型U:表示返回值的类型,可以是任意类型(T)-U:表示该方法接受一个参数(类型为 T),返回值的类型为 Uimport osfrom pyspark import SparkConf, SparkContext...【拓展】链式调用:在编程中将多个方法或函数的调用串联在一起的方式。在 PySpark 中,链式调用非常常见,通常用于对 RDD 进行一系列变换或操作。...三、reduceByKey算子定义:reduceByKey算子用于将具有相同键的值进行合并,并通过指定的聚合函数生成一个新的键值对 RDD。...(如这里的 99),sortBy算子会保持这些元素在原始 RDD 中的相对顺序(稳定排序)。

    14910

    【PySpark入门】手把手实现PySpark机器学习项目-回归算法

    摘要 PySpark作为工业界常用于处理大数据以及分布式计算的工具,特别是在算法建模时起到了非常大的作用。PySpark如何建模呢?...这篇文章手把手带你入门PySpark,提前感受工业界的建模过程! 任务简介 在电商中,了解用户在不同品类的各个产品的购买力是非常重要的!这将有助于他们为不同产品的客户创建个性化的产品。...在这篇文章中,笔者在真实的数据集中手把手实现如何预测用户在不同品类的各个产品的购买行为。 如果有兴趣和笔者一步步实现项目,可以先根据上一篇文章的介绍中安装PySpark,并在网站中下载数据。...默认情况下,drop()方法将删除包含任何空值的行。我们还可以通过设置参数“all”,当且仅当该行所有参数都为null时以删除该行。这与pandas上的drop方法类似。...直观上,train1和test1中的features列中的所有分类变量都被转换为数值,数值变量与之前应用ML时相同。我们还可以查看train1和test1中的列特性和标签。

    8.1K51
    领券