首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使用python绘制一个条形图,每个条形图有不同的类别?

要使用Python绘制一个条形图,每个条形图有不同的类别,你可以使用Matplotlib库。Matplotlib是一个强大的绘图库,可以用来创建各种静态、动态和交互式的图表。

首先,确保你已经安装了Matplotlib库。如果没有安装,可以使用pip命令进行安装:

代码语言:txt
复制
pip install matplotlib

以下是一个简单的示例代码,展示如何使用Matplotlib绘制一个带有不同类别的条形图:

代码语言:txt
复制
import matplotlib.pyplot as plt

# 数据
categories = ['Category A', 'Category B', 'Category C', 'Category D']
values = [10, 24, 15, 30]

# 创建条形图
plt.bar(categories, values)

# 添加标题和轴标签
plt.title('Bar Chart with Different Categories')
plt.xlabel('Categories')
plt.ylabel('Values')

# 显示图表
plt.show()

在这个例子中,categories列表包含了不同的类别名称,values列表包含了每个类别对应的值。plt.bar()函数用于创建条形图,plt.title(), plt.xlabel(), 和 plt.ylabel()函数用于添加图表的标题和轴标签。

如果你想要进一步自定义条形图,比如改变颜色、添加数据标签等,Matplotlib提供了丰富的API来实现这些功能。例如,你可以使用color参数来改变条形的颜色,使用plt.text()函数来添加数据标签。

参考链接:

  • Matplotlib官方文档: https://matplotlib.org/stable/contents.html
  • Matplotlib条形图教程: https://matplotlib.org/stable/gallery/lines_bars_and_markers/barh.html

如果你在使用Matplotlib时遇到任何问题,可以查看官方文档或者在Stack Overflow等社区寻求帮助。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

在Python Matplotlib中制作瀑布图

Matplotlib没有像“waterfall_chart()”这样的神奇函数,使我们能够用一行代码就绘制瀑布图。然而,可以使用一点小小的技巧在Python中自定义自己的瀑布图。...注意,这些条形的颜色与背景颜色不同。然后,我们使用lower点绘制第二组条形图,并将颜色设置为与背景颜色相同,默认情况下为白色。...基本上,由于与背景颜色相同,高度为“lower点”的条形图是不可见的。 图3 现在,我们有了一个基本的瀑布图,再给它添加一些颜色。这里使用绿色表示增加,红色表示减少。...数据在num列中随时可用,让我们创建一个新的color列来存储每个类别的适当颜色。...图4 瀑布图显示了每个类别对总数的贡献,因此可在每个条形的中间添加标签信息。也可以添加“连接符”,将上一个条形的起点和终点连接到下一个条形。

2.7K20

教程 | 5种快速易用的Python Matplotlib数据可视化方法

当类别数太多时,条形图将变得很杂乱,难以理解。你可以基于条形的数量观察不同类别之间的区别,不同的类别可以轻易地分离以及用颜色分组。我们将介绍三种类型的条形图:常规、分组和堆叠条形图。...常规条形图如图 1 所示。在 barplot() 函数中,x_data 表示 x 轴上的不同类别,y_data 表示 y 轴上的条形高度。误差条形是额外添加在每个条形中心上的线,可用于表示标准差。...常规条形图 分组条形图允许我们比较多个类别变量。如下图所示,我们第一个变量会随不同的分组(G1、G2 等)而变化,我们在每一组上比较不同的性别。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 ? 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...绘制该图的代码与分组条形图有相同的风格,我们循环地遍历每一组,但我们这次在旧的柱体之上而不是旁边绘制新的柱体。 ?

2.4K60
  • 5 种快速易用的 Python Matplotlib 数据可视化方法

    当类别数太多时,条形图将变得很杂乱,难以理解。你可以基于条形的数量观察不同类别之间的区别,不同的类别可以轻易地分离以及用颜色分组。我们将介绍三种类型的条形图:常规、分组和堆叠条形图。...常规条形图如图 1 所示。在 barplot() 函数中,x_data 表示 x 轴上的不同类别,y_data 表示 y 轴上的条形高度。误差条形是额外添加在每个条形中心上的线,可用于表示标准差。...常规条形图 分组条形图允许我们比较多个类别变量。如下图所示,我们第一个变量会随不同的分组(G1、G2 等)而变化,我们在每一组上比较不同的性别。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...绘制该图的代码与分组条形图有相同的风格,我们循环地遍历每一组,但我们这次在旧的柱体之上而不是旁边绘制新的柱体。

    2K40

    5个快速而简单的数据可视化方法和Python代码

    在这篇博客文章中,我们将研究5种数据可视化,并使用Python的Matplotlib为它们编写一些快速简单的函数。与此同时,这里有一个很棒的图表,可以帮助你为工作选择合适的可视化工具! ?...使用条形图(而不是散点图)可以让我们清楚地看到每个存储箱的频率之间的相对差异。...当你试图可视化分类数据,有几个(可能小于10)类别,这时,条形图是最有效的。...如果我们有太多的类别,那么这些条形图会非常混乱,难以理解。它们非常适合分类数据,因为你可以很容易地通过条形图大小看到类别之间的差异。类别也很容易通过颜色编码来划分。...通过使用颜色编码,我们可以很容易地看到和理解哪些服务器每天的工作量最大,以及负载与其他服务器的负载相比如何。其代码遵循与分组条形图相同的样式。

    2.1K10

    计算与推断思维 六、可视化

    每个条形的长度与相应类别的频率成正比。 我们使用横条绘制条形图,因为这样更容易标注条形图。 所以Table的方法称为barh。 它有两个参数:第一个是类别的列标签,第二个是频率的列标签。...如果你要手动绘制条形图,则可以做出完全不同的选择,并且仍然会是完全正确的条形图,前提是你使用相同宽度绘制了所有条形,并使所有间隔保持相同。 最重要的是,条形可以以任何顺序绘制。...条形图和直方图的区别 条形图为每个类别展示一个数量。 它们通常用于显示类别变量的分布。 直方图显示定量变量的分布。 条形图中的所有条形都具有相同的宽度,相邻的条形之间有相等的间距。...直方图的条形可以具有不同的宽度,并且是连续的。 条形图中条形的长度(或高度,如果垂直绘制)与每个类别的值成正比。 直方图中条形的高度是密度的度量;直方图中的条形的面积与桶中的条目数量成正比。...Python 绘制了两个散点图:这个变量和另外两个之间的关系,每个关系一个。 金色和蓝色的散点图向上倾斜,并显示出儿子的高度和父母的高度之间的正相关。

    2.8K20

    52个数据可视化图表鉴赏

    4.条形图 条形图是一种用矩形表示分组数据的图表,矩形条的长度与其表示的值成比例。可以垂直或水平绘制条形图。垂直条形图有时也称为折线图。图表的一个轴显示要比较的特定类别,另一个轴表示离散值。...例如,可以有一个折线图,其中各行显示每个客户细分一段时间内的平均销售额,然后可以有另一行显示所有客户细分的组合平均值。 16.连接地图 连接地图是通过直线或曲线将放置在地图上的点连接起来绘制的。...外部的每个条相对于最后一个相对较长,即使它们代表相同的值。这是因为每个杆必须位于不同的半径,所以每个杆都是根据其角度来判断的。我们的视觉系统更擅长解释直线,因此笛卡尔条形图是比较数值的更好选择。...散点图通常用于比较跨类别的聚合数据。 42.分段条形图 当两个或多个数据集并排绘制并分组在同一轴上的类别下时,可以使用如图的条形图的这种变化。...与条形图一样,每个条形图的长度用于显示类别之间的离散数值比较。每个数据系列都指定了一种单独的颜色或同一颜色的不同阴影,以便区分它们。然后将每组钢筋彼此隔开。

    5.9K21

    Pandas单变量画图

    这包括条形图和折线图等基本工具。通过这些,我们将了解pandas绘制库结构,并花一些时间检查数据类型。 数据分类: Norminal Data 定类变量:变量的不同取值仅仅代表了不同类的事物。...加州生产葡萄酒占杂志评选到的葡萄酒的几乎三分之一! 条形图非常灵活:高度可以代表任何东西,只要它是一个数字。每个栏都可以代表任何东西,只要它是一个类别。...折线图Line charts 葡萄酒评论记分卡有20个不同的独特值可供填写,我们的条形图几乎不够。如果杂志评价0-100的话,有100个不同的类别,该怎么办?类别太多了,不适合用条形图处理!...但是,折线图有一个重要的缺点:与条形图不同,它们不适合名义分类数据。虽然条形图区分了点线图的每个“类型”,但它们将它们组合在一起。因此,折线图断言水平轴上的值的顺序,并且对于某些数据,顺序将没有意义。...当仅绘制一个变量时,面积图和折线图之间的差异主要是视觉方面上:一个底部有阴影,一个没有。在这种情况下,它们可以互换使用。 定距数据Interval data 定距变量的例子是太阳的温度。

    1.9K20

    为什么你觉得Matplotlib用起来很困难?因为你还没看过这个思维导图

    Matplotlib是一个流行的Python库,可以很容易地用于创建数据可视化。然而,设置数据、参数、图形和绘图在每次执行新项目时都可能变得非常混乱和繁琐。...而且由于应用不同,我们不知道选择哪一个图例,比如直方图,饼状图,曲线图等等。这里有一个很棒的思维导图,可以帮助您为工作选择正确的可视化效果: ?...使用条形图(而不是散点图)可以让我们清楚地看到每个箱子频率之间的相对差异。...条形图 当您试图将类别很少(可能少于10个)的分类数据可视化时,条形图是最有效的。如果我们有太多的类别,那么图中的条形图就会非常混乱,很难理解。...它们非常适合分类数据,因为您可以根据条形图的大小;分类也很容易划分和颜色编码。我们将看到三种不同类型的条形图:常规的、分组的和堆叠的: ?

    1.4K32

    科研绘图你值得注意的14个点 (2)

    这通过将圆分成若干扇区实现,所有扇区加起来构成一个完整的圆。然而,饼状图因人类在识别角度和面积上的能力远不如识别长度而受到批评。 以这个例子来说,我们有两个大类,每个大类下有4个子类。...绘制同心圆环图 在这个案例中,我们有三个大类,每个大类下又分为两个小类(类型 I 或类型 II)。 在同心圆环图中,人们可能会误以为数据是通过弧长来表示的,但实际上这种理解是错误的。...这种视觉展示方式涉及到一系列样本,每个样本都包含多个类别的成员。但是,当样本和类别数量众多时,为了有效传达信息,堆叠条形图需要进行优化,这里的“优化”指的是对样本进行合理分组和排序。...这里有一个包含100个样本和8个成员类别的数据示例。由于样本和类别众多,如果不对条形图的顺序进行优化,很难从图表中看出任何信息。我在看什么?优化条形图的顺序后,哇,这真的让图表变得清晰多了,不是吗?...每组有5株植物。处理的效果被分为三个类别:浅绿色果实、浅蓝色果实和深蓝色果实。每株植物检查了100个果实,并统计了每个类别中果实的数量。计算并报告了每个类别中果实的百分比。

    7810

    60种常用可视化图表的使用场景——(上)

    多组条形图通常用来将分组变量或类别与其他数据组进行比较,也可用来比较迷你直方图,每组内的每个条形将表示变量的显著间隔。 但缺点是,当有太多条形组合在一起时将难以阅读。...13、堆叠式条形图 跟多组条形图不同,堆叠式条形图 (Stacked Bar Graph) 将多个数据集的条形彼此重迭显示,适合用来显示大型类别如何细分为较小的类别,以及每部分与总量有什么关系。...堆叠式条形图共分成两种: 简单堆叠式条形图。将分段数值一个接一个地放置,条形的总值就是所有段值加在一起,适合用来比较每个分组/分段的总量。 100% 堆叠式条形图。...在每个流程阶段中,流向箭头或线可以组合在一起,或者往不同路径各自分开。我们可用不同颜色来区分图表中的不同类别,或表示从一个阶段到另一个阶段的转换。...每个线集对应于一个维度/数据集,其数值/类别由该线集内的不同线段所表示。每条线的宽度和流程路径,均由类别总数的比例份数所决定。每条流程路径都可以用不同颜色代表,以显示和比较不同类别之间的分布。

    26710

    Python数据可视化的10种技能

    当然 kind 还可以取其他值,这个我在后面的视图中会讲到,不同的 kind 代表不同的视图绘制方式。 好了,让我们来模拟下,假设我们的数据是随机的 1000 个点。...条形图 如果说通过直方图可以看到变量的数值分布,那么条形图可以帮我们查看类别的特征。在条形图中,长条形的长度表示类别的频数,宽度表示类别。...Matplotlib 绘制: ? Seaborn 绘制: ? 饼图 饼图是常用的统计学模块,可以显示每个部分大小与总和之间的比例。在 Python 数据可视化中,它用的不算多。...因为蜘蛛图是一个圆形,你需要计算每个坐标的角度,然后对这些数值进行设置。当画完最后一个点后,需要与第一个点进行连线。...关于本次 Python 可视化的学习,我希望你能掌握: 视图的分类,以及可以从哪些维度对它们进行分类; 十种常见视图的概念,以及如何在 Python 中进行使用,都需要用到哪些函数; 需要自己动手跑一遍案例中的代码

    2.8K20

    Pandas数据可视化

    也可以折算成比例, 计算加利福尼亚葡萄酒占总数的百分比 : 条形图(柱状图)非常灵活: 高度可以代表任何东西,只要它是数字即可 每个条形可以代表任何东西,只要它是一个类别即可。...也可以用来展示《葡萄酒杂志》(Wine Magazine)给出的评分数量的分布情况:  如果要绘制的数据不是类别值,而是连续值比较适合使用折线图 : 柱状图和折线图区别 柱状图:简单直观,很容易根据柱子的长短看出值的大小...如果分类比较多,必然每个分类的面积会比较小,这个时候很难比较两个类别 如果两个类别在饼图中彼此不相邻,很难进行比较  可以使用柱状图图来替换饼图 Pandas 双变量可视化 数据分析时,我们需要找到变量之间的相互关系...堆叠图(Stacked plots) 展示两个变量,除了使用散点图,也可以使用堆叠图 堆叠图是将一个变量绘制在另一个变量顶部的图表 接下来通过堆叠图来展示最常见的五种葡萄酒  从结果中看出,最受欢迎的葡萄酒是...: 通过透视表找到每种葡萄酒中,不同评分的数量 : 从上面的数据中看出,行列分别表示一个类别变量(评分,葡萄酒类别),行列交叉点表示计数,这类数据很适合用堆叠图展示 折线图在双变量可视化时,仍然非常有效

    12610

    利用Python的Plotly库创建交互式数据可视化

    下面我们来展示如何使用Plotly创建一个简单的交互式线图,并添加一些交互功能。...下面我们来展示如何使用Plotly创建一个简单的交互式条形图,并添加一些交互功能。...='类别', yaxis_title='值')​# 显示图形fig.show()上述代码将创建一个简单的条形图,其中包含五个类别(A、B、C、D、E),每个类别对应的值分别为23、45、56、78和90...创建交互式热力图除了散点图、线图和条形图之外,Plotly还支持创建交互式热力图。下面我们来展示如何使用Plotly创建一个简单的交互式热力图,并添加一些交互功能。...总结本文介绍了如何利用Python的Plotly库进行交互式图形可视化。首先,我们学习了如何安装Plotly库,并使用基本的示例代码创建了散点图、线图、条形图和热力图。

    94530

    五分钟入门数据可视化

    在数据科学中,有多种工具可以进行可视化。在本文中,我(毛利)展示了使用Python来实现的各种可视化图表。...主要的可视化视图 比较:比较数据间各类别的关系,或者是它们随着时间的变化趋势,比如折线图; 联系:查看两个或两个以上变量之间的关系,比如散点图; 构成:每个部分占整体的百分比,或者是随着时间的百分比变化...多变量可视化视图: 可以让一张图同时查看两个以上的变量,比如“身高”和“年龄”,你可以理解是同一个人的两个参数,这样在同一张图中可以看到每个人的“身高”和“年龄”的取值,从而分析出这两个变量之前是否存在某种联系...seaborn 条形图 条形图可以帮我们查看类别的特征。在条形图中,长条形的长度表示类别的频数,宽度表示类别。...Matplotlib 总结 在 Python 生态系统中绘制数据是一件好事也是一件坏事。绘制数据的工具有很多可供选择既是一件好事也是一件坏事,尽力搞清楚哪一个工具适合你取决于你要实现什么。

    2.7K30

    《数据可视化基础》第四章:可视化图形推荐

    除了条形图之外,我们还可以使用点图来进行可视化。这个点图是把点放到数量相对应的位置上来进行展示的。 ? 如果对于有多组类别的计数。我们可以使用分组或者堆叠的条形图来进行展示。...同时也可以把两个类别映射到X和Y轴上,这样就得到了热图来进行展示了。 ? 另外,对于多组别的数目的展示的话,如果是想要展示不同交集之间的数目可以使用venn图和upset图。 ?...4 x-y 相关性 当我们想显示两个连续性变量的变化的时候,可以使用散点图来进行可视化。如果我们有三个连续性变量,则可以将一个映射到点大小上,从而创建散点图的一种变体,称为气泡图。...如果我们有两个响应变量的时间序列,我们可以绘制一个连接的散点图,其中我们首先在散点图中绘制两个响应变量,然后连接对应于相邻时间点的点。我们可以使用平滑线来表示较大数据集中的趋势。 ?...在某些情况下,根据其他一些数量(例如人口数量)使不同区域变形或将每个区域简化为正方形可能会有所帮助。这种可视化称为制图(cartograms)。 ?

    2.4K30

    python 画条形图(柱状图)

    当使用 Python 画条形图时,通常会使用 Matplotlib 库。Matplotlib 是一个广泛用于绘制图表和数据可视化的库,它提供了丰富的函数和方法来创建各种类型的图表,包括条形图。...Matplotlib 是一个用于绘制数据可视化图表的 Python 库。它提供了一个广泛的功能集,使得用户可以创建各种类型的图表,包括折线图、散点图、条形图、饼图、直方图等等。...plt.show() 使用 Matplotlib 创建了一个简单的条形图,并对其进行了一些定制。...定义了两个列表变量 categories 和 values,分别表示条形图的类别和对应的数值。...plt.bar 函数的第一个参数是类别列表 categories,第二个参数是对应的数值列表 values,通过这两个参数可以指定条形图的类别和高度。

    68931

    可视化图表样式使用大全

    多组条形图通常用来将分组变量或类别与其他数据组进行比较,也可用来比较迷你直方图,每组内的每个条形将表示变量的显著间隔。 但缺点是,当有太多条形组合在一起时将难以阅读。...堆叠式条形图 ? 跟多组条形图不同,堆叠式条形图 (Stacked Bar Graph) 将多个数据集的条形彼此重迭显示,适合用来显示大型类别如何细分为较小的类别,以及每部分与总量有什么关系。...在每个流程阶段中,流向箭头或线可以组合在一起,或者往不同路径各自分开。我们可用不同颜色来区分图表中的不同类别,或表示从一个阶段到另一个阶段的转换。...平行集合图与桑基图类似,都显示流程和比例,但平行集合图不使用箭头,它们在每个所显示的线集 (line-set) 划分流程路径。 每个线集对应于一个维度/数据集,其数值/类别由该线集内的不同线段所表示。...这种图表使用同心圆网格来绘制条形图。每个圆圈表示一个数值刻度,而径向分隔线则用作区分不同类别或间隔(如果是直方图)。 条形通常从中心点开始向外延伸,但也可以别处为起点以显示数值范围(如跨度图)。

    9.4K10

    常用60类图表使用场景、制作工具推荐!

    堆叠式条形图 跟多组条形图不同,堆叠式条形图 (Stacked Bar Graph) 将多个数据集的条形彼此重迭显示,适合用来显示大型类别如何细分为较小的类别,以及每部分与总量有什么关系。...在每个流程阶段中,流向箭头或线可以组合在一起,或者往不同路径各自分开。我们可用不同颜色来区分图表中的不同类别,或表示从一个阶段到另一个阶段的转换。...每个线集对应于一个维度/数据集,其数值/类别由该线集内的不同线段所表示。每条线的宽度和流程路径,均由类别总数的比例份数所决定。每条流程路径都可以用不同颜色代表,以显示和比较不同类别之间的分布。...这种图表使用同心圆网格来绘制条形图。每个圆圈表示一个数值刻度,而径向分隔线则用作区分不同类别或间隔(如果是直方图)。 条形通常从中心点开始向外延伸,但也可以别处为起点以显示数值范围(如跨度图)。...如果是按比例绘制的时间线,我们可以通过查看不同事件之间的时间间隔,了解事件发生的时间或即将在何时发生,从中查找时间段内的事件是否遵循任何模式,或者事件在该时间段内如何分布。

    8.9K20

    10分钟入门Matplotlib: 数据可视化介绍&使用教程

    Python可以在大多数平台上工作,而且使用起来也很简单。 Python有很多库可以调用,用于可视化和数据分析的库主要以下几种。...绘制一个简单的图像 在这里,我们将使用NumPy生成的随机数来绘制一个简单的图像。创建图像最简单的方法是使用' plot() '方法。...这些图的许多属性都是通用的,如axis, color等,但有些属性却是特有的。 条形图 概述: 条形图使用水平或垂直方向的长条去表示数据。条形图用于显示两个或多个类别的值,通常x轴代表类别。...每个长条的长度与对应类别的计数成正比。...每个分布都有四个不同的特征,包括 分布中心 分布散布 分布形状 分布峰值 直方图需要两个输入,x轴表示bin, y轴表示数据集中每个bin对应值的频率。每个bin都有一个最小值和最大值的范围。

    1.8K10

    R语言系列第六期:②R语言基本绘图(下)

    并列箱线图 下面我们来看一下总统的政党派别与经济变量之间的关系如何。若要依据属性进行分类后,对定量变量进行比较,那么绘制并列箱线图是一个有用的方法。...对属性变量分类后,每个箱线图中仅包含特定类别中定量变量的几个数字。我们按变量party分类,绘制unemploy的并列箱线图。...#Tips:箱线图语句的参数如下,其关键参数为unemploy~party,它是R参数中常见语句,大致意思是“按照执政党划分失业率”得到的结果是,箱线图函数根据不同的政党类别分别绘制图形。...在R中,条形图很容易绘制。在最简单情况下,这些绘制图形的命令仅需要一个数值型向量作为参数。 我们用条形图并列展示民主党和共和党预算年的失业率均值。...在R中,条形图命令barplot()需要一个数值型变量来对其绘制条形图。如果有多个数值那么会绘制多条结果,所以首先要计算出两个变量的均值,并将其组成向量进行绘图。

    1.2K10
    领券