首页
学习
活动
专区
圈层
工具
发布

画出你的数据故事:Python中Matplotlib使用从基础到高级

摘要: Matplotlib是Python中广泛使用的数据可视化库,它提供了丰富的绘图功能,用于创建各种类型的图表和图形。...本文将从入门到精通,详细介绍Matplotlib的使用方法,通过代码示例和中文注释,帮助您掌握如何在不同场景下灵活绘制高质量的图表。1....简介Matplotlib是一个功能强大的Python数据可视化库,它可以用来绘制各种类型的图表,包括折线图、散点图、柱状图、饼图、3D图等。...Matplotlib的灵活性和可定制性使得它成为数据科学家和分析师的首选工具。本文将带您从入门到精通,深入探索Matplotlib的各种绘图技巧。2....此外,我们还展示了数据可视化实例,展示了如何将Matplotlib应用于实际数据分析中。最后,我们介绍了Matplotlib的扩展库Seaborn和Plotly,让您了解更多可选的数据可视化工具。

1.3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    50 个数据可视化图表

    本文总结了在数据分析和可视化中最有用的 50 个 Matplotlib 图表。这些图表列表允许您使用 python 的 matplotlib 和 seaborn 库选择要显示的可视化对象。...在这个例子中,你从数据框中获取记录,并用 encircle() 来使边界显示出来。 3....下图显示了数据中各组之间最佳拟合线的差异。要禁用分组并仅为整个数据集绘制一条最佳拟合线,请从 sns.lmplot() 调用中删除 hue ='cyl' 参数。...条形图(Bar Chart) 条形图是基于计数或任何给定指标可视化项目的经典方式。在下面的图表中,我为每个项目使用了不同的颜色,但您通常可能希望为所有项目选择一种颜色,除非您按组对其进行着色。...使用辅助 Y 轴来绘制不同范围的图形(Plotting with different scales using secondary Y axis) 如果要显示在同一时间点测量两个不同数量的两个时间序列,

    4.7K20

    5个快速而简单的数据可视化方法和Python代码

    在这篇博客文章中,我们将研究5种数据可视化,并使用Python的Matplotlib为它们编写一些快速简单的函数。与此同时,这里有一个很棒的图表,可以帮助你为工作选择合适的可视化工具! ?...你还可以通过对组进行简单的颜色编码来查看不同组数据的这种关系,如下面的第一个图所示。想要可视化三个变量之间的关系吗?完全没有问题!只需使用另一个参数,如点大小,对第三个变量进行编码,如下面的图2所示。...通过使用颜色编码,我们可以很容易地看到和理解哪些服务器每天的工作量最大,以及负载与其他服务器的负载相比如何。其代码遵循与分组条形图相同的样式。...实线盒的底部和顶部总是第一和第三四分位数(25%和75%的数据),而框内的带始终是第二四分位数(中位数)。虚线加上最后的条,从框中延伸出来显示数据的范围。...Matplotlib函数' boxplot() '为' ydata '的每一列或序列' ydata '中的每个向量绘制一个箱线图,因此,“xdata”中的每个值对应于“y_data”中的列/向量。

    2.5K10

    原来使用 Pandas 绘制图表也这么惊艳

    数据可视化是捕捉趋势和分享从数据中获得的见解的非常有效的方式,流行的可视化工具有很多,它们各具特色,但是在今天的文章中,我们将学习使用 Pandas 进行绘图。...%matplotlib 内联魔法命令也被添加到代码中,以确保绘制的数字正确显示在笔记本单元格中: import pandas as pd import numpy as np import matplotlib.pyplot...宽度和高度的默认值分别为 6.4 和 4.8。 通过提供列名列表并将其分配给 y 轴,我们可以从数据中绘制多条线。...: df_3Months.plot(kind='barh', figsize=(9,6)) Output: 我们还可以在堆叠的垂直或水平条形图上绘制数据,这些条形图代表不同的组,结果条的高度显示了组的组合结果...六边形图 当数据非常密集时,六边形 bin 图(也称为 hexbin 图)可以替代散点图。换句话说,当数据点的数量很大,并且每个数据点不能单独绘制时,最好使用这种以蜂窝形式表示数据的绘图。

    5.6K50

    50个最有价值的数据可视化图表(推荐收藏)

    本文总结了在数据分析和可视化中最有用的 50 个 Matplotlib 图表。这些图表列表允许您使用 python 的 matplotlib 和 seaborn 库选择要显示的可视化对象。...在这个例子中,你从数据框中获取记录,并用 encircle() 来使边界显示出来。 ? 3....下图显示了数据中各组之间最佳拟合线的差异。要禁用分组并仅为整个数据集绘制一条最佳拟合线,请从 sns.lmplot() 调用中删除 hue ='cyl' 参数。 ?...条形图(Bar Chart) 条形图是基于计数或任何给定指标可视化项目的经典方式。在下面的图表中,我为每个项目使用了不同的颜色,但您通常可能希望为所有项目选择一种颜色,除非您按组对其进行着色。 ?...使用辅助 Y 轴来绘制不同范围的图形(Plotting with different scales using secondary Y axis) 如果要显示在同一时间点测量两个不同数量的两个时间序列,

    5.3K20

    总结了50个最有价值的数据可视化图表

    本文总结了在数据分析和可视化中最有用的 50 个 Matplotlib 图表。这些图表列表可以使用 python 的 matplotlib 和 seaborn 库选择要显示的可视化对象。...在这个例子中,你从数据框中获取记录,并用 encircle() 来使边界显示出来。 3....下图显示了数据中各组之间最佳拟合线的差异。要禁用分组并仅为整个数据集绘制一条最佳拟合线,请从 sns.lmplot() 调用中删除 hue ='cyl' 参数。...条形图(Bar Chart) 条形图是基于计数或任何给定指标可视化项目的经典方式。在下面的图表中,我为每个项目使用了不同的颜色,但您通常可能希望为所有项目选择一种颜色,除非您按组对其进行着色。...使用辅助 Y 轴来绘制不同范围的图形(Plotting with different scales using secondary Y axis) 如果要显示在同一时间点测量两个不同数量的两个时间序列,

    4K10

    娱乐圈排行榜动态条形图绘制

    我是爬虫爬下来的数据,如果不想爬虫可直接到公众号中回复"娱乐圈排行榜条形图",即可获取数据。..._1 = concat(all_data) #把列表中存放的数据框连接成一个数据框 #统计出现次数 all_data_1.name.value_counts() 代码解析: period: 找出所有期数去重...,并按从小到大排序; all_data: 构造存放所有数据的空列表; for: 构造循环取出每期前10名的信息; all_data_1: 用concat函数把列表中存放的数据框连接成一个数据框(列表中不仅能存单个元素还可以存数据框...图2 娱乐圈男明星第538期排行榜条形图 数据来源:123粉丝网 三、绘制动态条形图整合代码 import matplotlib.pyplot as plt import matplotlib import...注:该代码只是在绘制单个条形图代码的基础上,用循环把所有图每隔一个很短的时间展示出来,给人一种动图的效果。 本文是本人使用matplotlib库进行绘图得到的结果,如有问题请指正。

    1.2K30

    用Python进行美丽而轻松的绘图— Pandas + Bokeh

    尽管Matplotlib可以满足我们在Python中绘制图形时的所有需求,但有时使用它创建漂亮的图表有时会很耗时。好吧,有时候我们可能想向老板展示一些东西,以便拥有一些漂亮且互动的情节。...数据集包含2010年至2019年三个类别的销售额。让我们使用Numpy生成此数据集。...好的。我们现在可以绘制数据框。...以下是官方GitHub存储库中的GIF。 ? 高级参数 该库还支持许多高级参数,如果需要的话,这些参数使我们可以自定义绘图。 这是另一个使用相同数据集但使用折线图绘制数据的示例。...因此,该图表将被保存并输出到可以保留和分发的HTML文件中。 ? 在本文中,我演示了如何使用该pandas_bokeh库以极其简单的代码但具有交互功能的精美演示来端对端绘制Pandas数据框。

    2.5K20

    Python绘图全景式教程:提升你的数据表达力

    @tocPython绘图教程:从基础到进阶在数据分析与科学计算的领域,Python因其丰富的库和简单易用的语法,成为了数据可视化的主要工具之一。...在本教程中,我们将详细介绍如何使用Python进行数据绘图,并通过实例逐步学习各种常见的图形类型和绘图技巧。...Bokeh:另一个绘制交互式图形的库,适用于Web开发。本教程将介绍Matplotlib、Seaborn和Plotly这三大常用库的使用方法,帮助你掌握数据可视化的技能。...要使用Matplotlib,首先需要安装它:pip install matplotlib绘制基础图形Matplotlib使用pyplot模块来进行绘图。...案例分析:数据可视化应用用Matplotlib绘制线性回归图假设我们有一组简单的线性回归数据,以下是如何使用Matplotlib绘制回归线的示例:import numpy as npimport matplotlib.pyplot

    70900

    十分钟入门 Python 绘图库 Matplotlib 入门教程

    关于如何安装Matplotlib请参见这里:Matplotlib Installing。...用户图形界面工具包 使用Matplotlib,能够的轻易生成各种类型的图像,例如:直方图,波谱图,条形图,散点图等。...注2:如果没有必要,下文的截图会去掉图形外侧的边框,只保留图形主体。 一次绘制多个图形 有些时候,我们可能希望一次绘制多个图形,例如:两组数据的对比,或者一组数据的不同展示方式等。...pie函数的详细说明参见这里:matplotlib.pyplot.pie 条形图 bar函数用来绘制条形图。条形图常常用来描述一组数据的对比情况,例如:一周七天,每天的城市车流量。...hist函数的详细说明参见这里:matplotlib.pyplot.hist 结束语 通过本文,我们已经知道了Matplotlib的大致使用方法和几种最基本的图形的绘制方式。

    1.2K00

    数据分析入门系列教程-常用图表

    条形图 条形图可以查看数据中不同类别之间的分布请求 盒式图 是由五个数值组成:最大值(max)、最小值(min)、中位数(median)和上下四分位数(Q3,Q1),可以帮助我们分析数据的差异性、离散程度和异常值等信息...饼图 饼图可以很好的呈现每类数据所占总数据的比例情况 热力图 热力图是把数据用矩阵表示的形式,不同数据颜色不同,可以通过颜色直观的判断某个位置上的数值情况 雷达图 可以很好的显示一对多的关系,比如王者荣耀中的对局信息...图片 在以后的工作中,如果遇到可视化工作,又不太确定如何更好的呈现数据,可以来看看上面的图片,也许能找到灵感。...总结 今天我们一起学习了常用的可视化图表以及如何制作相关图表。对于 Matplotlib、Seaborn 和 Pyecharts 工具包的使用一定要熟练的掌握,在数据分析的过程中会经常使用。...这三个工具包的官方文档都是非常好的学习工具,希望大家能够在后面的学习中好好利用,多加探索。 ?

    2.2K20

    Python 绘图库 Matplotlib 入门教程

    关于如何安装Matplotlib请参见这里:Matplotlib Installing。...用户图形界面工具包 使用Matplotlib,能够的轻易生成各种类型的图像,例如:直方图,波谱图,条形图,散点图等。...注2:如果没有必要,下文的截图会去掉图形外侧的边框,只保留图形主体。 一次绘制多个图形 有些时候,我们可能希望一次绘制多个图形,例如:两组数据的对比,或者一组数据的不同展示方式等。...pie函数的详细说明参见这里:matplotlib.pyplot.pie 条形图 bar函数用来绘制条形图。条形图常常用来描述一组数据的对比情况,例如:一周七天,每天的城市车流量。...hist函数的详细说明参见这里:matplotlib.pyplot.hist 结束语 通过本文,我们已经知道了Matplotlib的大致使用方法和几种最基本的图形的绘制方式。

    1.2K10

    Python数据可视化的10种技能

    当然 kind 还可以取其他值,这个我在后面的视图中会讲到,不同的 kind 代表不同的视图绘制方式。 好了,让我们来模拟下,假设我们的数据是随机的 1000 个点。...在 Matplotlib 中,我们使用 plt.boxplot(x, labels=None) 函数,其中参数 x 代表要绘制箱线图的数据,labels 是缺省值,可以为箱线图添加标签。...在 Matplotlib 中,我们使用 plt.pie(x, labels=None) 函数,其中参数 x 代表要绘制饼图的数据,labels 是缺省值,可以为饼图添加标签。...通过这些数据,需要你来预测鸢尾花卉属于三个品种中的哪一种。...关于本次 Python 可视化的学习,我希望你能掌握: 视图的分类,以及可以从哪些维度对它们进行分类; 十种常见视图的概念,以及如何在 Python 中进行使用,都需要用到哪些函数; 需要自己动手跑一遍案例中的代码

    3.2K20

    Python数据处理从零开始----第四章(可视化)①②堆积柱状图目录使用Matplotlib和Pandas轻松堆积图表

    =============================================== 使用Matplotlib和Pandas轻松堆积图表 为何要绘制堆积图表 因为堆积图标可以表示多个变量或者分组内部的构成比...但是一般情况下使用Matplotlib创建堆积条形图可能很困难。...因为堆叠图需要的数据不是典型的行列dataframe,经典的数据框行为观测值,列为属性,而需要绘制堆积图表时是其他形式,甚至可能不是数据框而是多个series。...绘制三个图层的叠加图 下面是一个示例数据框,数据以列为单位。 在这种情况下,我们要创建一个堆积图,使用Year列作为x轴刻度线,Month列作为图层,Value列作为每个月的高度。...最终结果是一个新的数据框。

    2.3K20

    8个流行的Python可视化工具包

    人们已经在 Python 中实现了 ggplot2,复制了这个包从美化到语法的一切内容。...在制作美观且表现力强的图片时,我更倾向于使用 Bokeh——它已经帮我们完成了大量美化工作。 用 Pandas 表示相同的数据 蓝色的图是上面的第 17 行代码。这两个直方图的值是一样的,但目的不同。...以下是我针对一个简单图形构建的不同的表示,以及一些从斯坦福 SNAP 下载的代码(关于绘制小型 Facebook 网络)。...有很多数据可视化的包,但没法说哪个是最好的。希望阅读本文后,你可以了解到在不同的情境下,该如何使用不同的美化工具和代码。...Pyecharts绘制可视化地图专辑 Python 绘制惊艳的瀑布图 使用日历热图进行时序数据可视化 用 GeoPandas 绘制超高颜值数据地图 一行 Python 代码轻松构建树状热力图 这种

    1K20

    Python Seaborn (5) 分类数据的绘制

    在 Seaborn 中,相对低级别和相对高级别的方法用于定制分类数据的绘制图,上面列出的函数都是低级别的,他们绘制在特定的 matplotlib 轴上。...您可以使用 orient 关键字强制定向,但通常可以从传递给 x 和 / 或 y 的变量的数据类型推断绘图方向: ?...(未禾:这是多么令人愉悦的事情) 条形图 最熟悉的方式完成这个目标是一个条形图。 在 Seaborn 中 barplot() 函数在完整数据集上运行,并显示任意估计,默认情况下使用均值。...当在每个类别中有多个观察值时,它还使用引导来计算估计周围的置信区间,并绘制使用误差条: ? 条形图的特殊情况是当您想要显示每个类别中的观察次数,而不是计算第二个变量的统计量。...这使得很容易看出主要关系如何随着第二个变量的变化而变化,因为你的眼睛很好地收集斜率的差异: ? 为了使能够在黑白中重现的图形,可以使用不同的标记和线条样式来展示不同 hue 类别的层次: ?

    4.4K20

    教程 | 5种快速易用的Python Matplotlib数据可视化方法

    使用箱体(离散化)确实能帮助我们观察到「更完整的图像」,因为使用所有数据点而不采用离散化会观察不到近似的数据分布,可能在可视化中存在许多噪声,使其只能近似地而不能描述真正的数据分布。 ?...直方图案例 下面展示了 Matplotlib 中绘制直方图的代码。这里有两个步骤需要注意,首先,n_bins 参数控制直方图的箱体数量或离散化程度。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 ? 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...在下面的堆叠条形图中,我们比较了工作日的服务器负载。通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。...Matplotlib 函数 boxplot() 为 y_data 的每一列或 y_data 序列中的每个向量绘制一个箱线图,因此 x_data 中的每个值对应 y_data 中的一列/一个向量。 ?

    2.8K60
    领券