首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas profiling 生成报告并部署的一站式解决方案

它为数据集提供报告生成,并为生成的报告提供许多功能和自定义。在本文中,我们将探索这个库,查看提供的所有功能,以及一些高级用例和集成,这些用例和集成可以对从数据框创建令人惊叹的报告!...可以将DataFrame对象传递给profiling函数,然后调用创建的函数对象以开始生成分析文件。 无论采用哪种方式,都将获得相同的输出报告。我正在使用第二种方法为导入的农业数据集生成报告。...直方图选项卡显示变量的频率或数值数据的分布。通用值选项卡基本上是变量的 value_counts,同时显示为计数和百分比频率。...计数图是一个基本的条形图,以 x 轴作为列名,条形的长度代表存在的值的数量(没有空值)。类似的还有矩阵和树状图。 5. 样本 此部分显示数据集的前 10 行和最后 10 行。 如何保存报告?...到目前为止,我们已经了解了如何仅使用一行代码或函数生成DataFrame报告,以及报告包含的所有功能。我们可能有兴趣将此分析导出到外部文件,以便可以将其与其他应用程序集成或将其发布到 Web 上。

3.3K10

如何在 Python 中使用 plotly 创建人口金字塔?

人口金字塔是人口年龄和性别分布的图形表示。它由两个背靠背的条形图组成,一个显示男性的分布,另一个显示女性在不同年龄组的分布。...人口金字塔是一个强大的可视化工具,可以帮助我们了解人口的人口构成并识别趋势和模式。 在本文中,我们将探讨如何在 Python 中使用 Plotly 创建人口金字塔。...Plotly是一个强大的可视化库,允许我们在Python中创建交互式和动态绘图。 我们将使用 Plotly 创建一个人口金字塔,该金字塔显示人口的年龄和性别分布。...我们将首先将数据加载到熊猫数据帧中,然后使用 Plotly 创建人口金字塔。 使用情节表达 Plotly Express 是 Plotly 的高级 API,可以轻松创建多种类型的绘图,包括人口金字塔。...输出 结论 在本文中,我们学习了如何在 Python 中使用 Plotly 创建人口金字塔。我们探索了两种不同的方法来实现这一目标,一种使用熊猫数据透视表,另一种使用 Plotly 图形对象。

41710
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python单细胞学习笔记-day4

    矩阵:没有行名和列名 numpy 矩阵:推荐只存放一种数据类型的数据,但可允许多种数据类型 2.1 新建矩阵 使用numpy模块中的array()函数 2.2 取子集 使用下标和切片法: 2.3 矩阵和数据转换...矩阵转为数据框,可以加上行名和列名 数据框转为矩阵,有三种方法。...Note:会丢失行名和列名 df2.values df2.to_numpy() np.array(df2) 2.4 转置 m1.T 3.数据框 3.1 新建数据框 方式1: DataFrame函数:创建一个字典...,然后传递给pandas中的DataFrame()函数 可以使用index参数指定行名 方式2:从csv文件读取 import pandas as pd df2 = pd.read_csv("day3...3.3 提取行和列 .iloc:基于整数位置 loc:基于标签(行名或者列名)或是布尔值 import pandas as pd df1 = pd.DataFrame({ 'gene': ['gene

    5300

    数据特征分析

    分布分析对比分析统计分析帕累托分析正态性检验相关性分析 分布分析 分布分析 → 研究数据的分布特征和分布类型,分定量数据、定性数据区分基本统计量 极差 / 频率分布情况 / 分组组距及组数 import...dataframe,right → 是否右边包含,默认True # 通过groupby查看不同组的数据频率分布 # 给源数据data添加“分组区间”列 ---- [42.5, 60.0)...# 频率分布情况 - 定量字段 # ③ 求出目标字段下频率分布的其他统计量 → 频数,频率,累计频率 r_zj = pd.DataFrame(gcut_count) r_zj.rename(columns...# 关于同比与环比 # 同比 → 产品A在2015.3和2016.3的比较(相邻时间段的同一时间点) # 环比 → 产品A在2015.3和2015.4的比较(相邻时间段的比较) # 如何界定“相邻时间段...统计分析 统计指标对定量数据进行统计描述,常从集中趋势和离中趋势两个方面进行分析 集中趋势度量 / 离中趋势度量 # 1、集中趋势度量 # 指一组数据向某一中心靠拢的倾向,核心在于寻找数据的代表值或中心值

    1.2K11

    Pandas最详细教程来了!

    每列都可以是不同的数据类型(数值、字符串、布尔值等)。 DataFrame既有行索引也有列索引,这两种索引在DataFrame的实现上,本质上是一样的。...这里的索引是显式指定的。如果没有指定,会自动生成从0开始的数字索引。 列标签,表头的A、B、C就是标签部分,代表了每一列的名称。 下文列出了DataFrame函数常用的参数。...:索引/类似列表 | 使用的列标签;默认值为range(n) dtype:dtype | 使用(强制)的数据类型;否则通过推导得出;默认值为None copy:布尔值 | 从输入复制数据;默认值为False...下面介绍一下如何基于时间序列生成DataFrame。为了创建时间序列数据,我们需要一个时间索引。...其他的频率参数见下文 tz:字符串/None | 本地化索引的时区名称 normalize:布尔值 | 将start和end规范化为午夜;默认为False name:字符串 | 生成的索引名称 date_range

    3.2K11

    Python数据分析常用模块的介绍与使用

    ,由最后一位参数是元组还是列表决定 关于rand 在Python的NumPy库中,rand函数用于生成指定形状的随机数数组,这些随机数是从[0, 1)的均匀分布中随机抽取得到的。...数据值是存储在Series中的实际数据。 Series可以通过多种方式创建,包括从列表、数组、字典和标量值创建。...可以通过多种方式来创建DataFrame,包括读取外部数据源(如CSV、Excel、SQL数据库等)、从Python字典创建等。...info() 对所有数据进行简述,即返回DataFrame的信息,包括每列的数据类型和非空值的数量 isnull() 检测空值,返回一个元素类型为布尔值的DataFrame,当出现空值时返回True,...示例 创建DataFrame的语句如下: index和columes参数可以指定,当不指定时,从0开始。通常情况下,列索引都会给定,这样每一列数据的属性可以由列索引描述。

    32010

    《python数据分析与挖掘实战》笔记第3章

    对于定量数据,欲了解其分布形式是对称的还是非对称的,发现某些特大或特小的可疑值,可通过绘制频率分布表、绘制频率分布直方 图、绘制茎叶图进行直观地分析;对于定性分类数据,可用饼图和条形图直观地显示分布情况...定量数据的分布分析 对于定量变量而言,选择“组数”和“组宽”是做频率分布分析时最主要的问题,一般 按照以下步骤进行。 1)求极差。 2)决定组距与组数。 3)决定分点。 4)列出频率分布表。...5)绘制频率分布直方图。 遵循的主要原则如下。 1) 各组之间必须是相互排斥的。 2) 各组必须将所有的数据包含在内。 3) 各组的组宽最好相等。...3.4、小结 本章从应用的角度出发,从数据质量分析和数据特征分析两个方面对数据进行探索分析,最后介绍了 Python常用的数据探索函数及用例。...数据质量分析要求我们拿到数据后先检测是否存在缺失值和异常值;数据特征分析要求我们在数据挖掘建模前,通过频率分布分析、 对比分析、帕累托分析、周期性分析、相关性分析等方法,对采集的样本数据的特征规律进 行分析

    2.2K20

    初探pandas——安装和了解pandas数据结构

    import pandas as pd # 创建Series对象 obj=pd.Series([4,5,6,7]) print(obj) 0 4 1 5 2 6 3 7 dtype...: int64 左边为索引,右边为值,默认索引从0到n-1(n为数据长度),可以通过values属性和index属性分别获得Series对象的值和索引 print(obj.values) array([...4 d 6 e 7 dtype: int64 Series对象也能使用布尔值进行过滤 # 输出值大于5的元素 print(obj2[obj2>5]) d 6 e 7 dtype:...int64 DataFrame DataFrame表示矩阵的数据表,包含已排序的列集合,每一列可以是不同的的值类型(数值、字符串、布尔值等) DataFrame既有行索引,也有列索引,可以被视为一个共享相同索引的...Series的字典 # 创建DataFrame对象 data={'age':[18,18,18,20,20,20],'name':['a','b','c','aa','bb','cc'],'height

    56910

    panda python_12个很棒的Pandas和NumPy函数,让分析事半功倍

    1. allclose()  Allclose() 用于匹配两个数组并且以布尔值形式输出。如果两个数组的项在公差范围内不相等,则返回False。...Pandas非常适合许多不同类型的数据:  具有异构类型列的表格数据,例如在SQL表或Excel电子表格中  有序和无序(不一定是固定频率)的时间序列数据。  ...具有行和列标签的任意矩阵数据(同类型或异类)  观察/统计数据集的任何其他形式。实际上,数据根本不需要标记,即可放入Pandas数据结构。  ...以下是Pandas的优势:  轻松处理浮点数据和非浮点数据中的缺失数据(表示为NaN)  大小可变性:可以从DataFrame和更高维的对象中插入和删除列  自动和显式的数据对齐:在计算中,可以将对象显式对齐到一组标签...,用于从平面文件(CSV和定界文件)、 Excel文件,数据库加载数据,以及以超高速HDF5格式保存/加载数据  特定于时间序列的功能:日期范围生成和频率转换、移动窗口统计、日期移位和滞后。

    5.1K00

    NumPy 秘籍中文第二版:十、Scikits 的乐趣

    sklearn.cluster.AffinityPropagation.fit() 从欧几里得距离计算亲和度矩阵,并应用亲和度传播聚类。 diff() 计算 NumPy 数组中数字的差。...DataFrame是类似矩阵和字典的数据结构,类似于 R 中提供的功能。...操作步骤 首先,我们将为每个符号的每日对数回报创建带有 Pandas 的DataFrame。 然后,我们将在约会中加入这些。...我们将通过创建 Pandas DataFrame并调用其resample() 方法来做到这一点: 在创建 Pandas DataFrame之前,我们需要创建一个DatetimeIndex对象传递给DataFrame...单个字符给出重采样频率,如下所示: 每天D 每月M 每年A resample()方法的how参数指示如何采样数据。 默认为计算平均值。 另见 相关 Pandas 文档

    3K20

    直观地解释和可视化每个复杂的DataFrame操作

    操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...每种方法都将包括说明,可视化,代码以及记住它的技巧。 Pivot 透视表将创建一个新的“透视表”,该透视表将数据中的现有列投影为新表的元素,包括索引,列和值。...记住:Pivot——是在数据处理领域之外——围绕某种对象的转向。在体育运动中,人们可以绕着脚“旋转”旋转:大熊猫的旋转类似于。...Melt Melt可以被认为是“不可透视的”,因为它将基于矩阵的数据(具有二维)转换为基于列表的数据(列表示值,行表示唯一的数据点),而枢轴则相反。...为了访问狗的身高值,只需两次调用基于索引的检索,例如 df.loc ['dog']。loc ['height']。 要记住:从外观上看,堆栈采用表的二维性并将列堆栈为多级索引。

    13.3K20

    使用Pandas进行数据分析

    可以在这里详细了解对DataFrame的描述操作。 数据可视化 图表更能说明数据集各属性的分布及相互之间的关系。...Pandas使用matplotlib来创建图表,matplotlib也提供了很多方便的功能,您可以在这里了解Pandas更多关于数据可视化的知识。 特征分布 第一个易于审查的特征是各属性的分布。...我们还可以通过将各值进行离散化处理,处理后可以将各“容器(bucket)”中属性的频率作为直方图(hist)来查看: data.hist() 这可以让您注意各属性有趣的分布特征,例如pres和skin等属性近似于正态分布...您可以生成属性的直方图矩阵和按class分类后每一类值的直方图矩阵,如下所示: data.groupby('class').hist() 数据按class属性分组,然后为每个组中的属性创建直方图矩阵,结果是两个图像...=0.2, figsize=(6, 6), diagonal='kde') 这使用一个构造函数来创建属性与属性之间的散点图矩阵。

    3.4K50

    【数据处理包Pandas】数据透视表

    补充:reindex用法 reindex的作用是创建一个符合新索引的新对象(默认不会修改原对象df2),它的一个用途是按新索引重新排序。...第1个参数是data参数,提供了绘制数据透视表的数据来源,可以是整个 DataFrame,也可以是 DataFrame 的子集;index和columns参数指定了行分组键和列分组键;values指定想要聚合的数据字段名...columns:要在列上进行分组的序列、数组或DataFrame列。 values:可选参数,要聚合的值列。如果未指定,则将计算所有剩余列的计数/频率。...margins_name:可选参数,用于设置边际总计的名称。 dropna:可选参数,布尔值,默认为True,表示是否删除任何具有缺失值的行。...normalize:可选参数,布尔值或’all’,默认为False。如果为True,则返回相对频率(百分比形式)。如果为’all’,则在每个索引/列组中返回全局相对频率。

    7400

    基于Spark的机器学习实践 (二) - 初识MLlib

    公告:基于DataFrame的API是主要的API 基于MLlib RDD的API现在处于维护模式。 从Spark 2.0开始,spark.mllib包中基于RDD的API已进入维护模式。...例如下面创建一个3x3的单位矩阵: Matrices.dense(3,3,Array(1,0,0,0,1,0,0,0,1)) 类似地,稀疏矩阵的创建方法 Matrices.sparse(3,3,Array...(0,1,2,3),Array(0,1,2),Array(1,1,1)) 2.4 分布式矩阵 ◆ 把一个矩数据分布式存储到多个RDD中 将分布式矩阵进行数据转换需要全局的shuffle函数 最基本的分布式矩阵是...分布式矩阵具有长类型的行和列索引和双类型值,分布式存储在一个或多个RDD中。选择正确的格式来存储大型和分布式矩阵是非常重要的。将分布式矩阵转换为不同的格式可能需要全局shuffle,这是相当昂贵的。...到目前为止已经实现了四种类型的分布式矩阵。 基本类型称为RowMatrix。 RowMatrix是没有有意义的行索引的行向分布式矩阵,例如特征向量的集合。它由其行的RDD支持,其中每行是局部向量。

    2.8K20

    基于Spark的机器学习实践 (二) - 初识MLlib

    公告:基于DataFrame的API是主要的API 基于MLlib RDD的API现在处于维护模式。 从Spark 2.0开始,spark.mllib包中基于RDD的API已进入维护模式。...例如下面创建一个3x3的单位矩阵: Matrices.dense(3,3,Array(1,0,0,0,1,0,0,0,1)) 类似地,稀疏矩阵的创建方法 Matrices.sparse(3,3,Array...(0,1,2,3),Array(0,1,2),Array(1,1,1)) 2.4 分布式矩阵 ◆ 把一个矩数据分布式存储到多个RDD中 将分布式矩阵进行数据转换需要全局的shuffle函数 最基本的分布式矩阵是...分布式矩阵具有长类型的行和列索引和双类型值,分布式存储在一个或多个RDD中。选择正确的格式来存储大型和分布式矩阵是非常重要的。将分布式矩阵转换为不同的格式可能需要全局shuffle,这是相当昂贵的。...到目前为止已经实现了四种类型的分布式矩阵。 基本类型称为RowMatrix。 RowMatrix是没有有意义的行索引的行向分布式矩阵,例如特征向量的集合。它由其行的RDD支持,其中每行是局部向量。

    3.5K40
    领券