excelperfect Q:数据放置在列A中,我要得到这些数据中任意3个数据的所有可能组合。如下图1所示,列A中存放了5个数据,要得到这5个数据中任意3个数据的所有可能组合,如列B中所示。...如何实现? ? 图1 (注:这是无意在ozgrid.com中看到的一个问题,我觉得程序编写得很巧妙,使用了递归的方法来解决,非常简洁,特将该解答稍作整理后辑录于此与大家分享!)...A Set rng =Range("A1", Range("A1").End(xlDown)) '设置每个组合需要的数据个数 n = 3 '在数组中存储要组合的数据...Then lRow = lRow + 1 Range("B" & lRow) = Join(vResult, ", ") '每组组合放置在多列中...代码的图片版如下: ? 如果将代码中注释掉的代码恢复,也就是将组合结果放置在多列中,运行后的结果如下图2所示。 ? 图2
EDI(电子数据交换)如何工作,这大概是企业主、公司经理、企业EDI系统管理人员常问的一个问题。尽管现在EDI已经是一项相当广泛的技术,但仍有一些问题需要讨论。...那些没有连接到EDI的人通常并不理解EDI(电子数据交换)和互联网通信技术之间的区别。那么EDI(电子数据交换)在供应链中是如何工作的呢?继续阅读下文,您将会找到一个答案。...如果您有接触或是了解过采购业务中传统的文件流通方式,您可能会注意到,纸张操作和邮寄需要花费大量时间。...如果业务活动顺利进行,供应商就会将发票直接发送到交易伙伴的应付账款系统,并确认商品的装运情况,所有这些流程都可以在一天内完成。...总的来讲,EDI的实施成本取决于项目需求(交易伙伴数量、业务单据类型等。)及其他实施要求,如是否搭建热备环境,是否需要支持高可用,是否区分测试环境等。如果是一个小型企业,可以自行设定限制。
最小-最大标准化(规范化) 最小-最大规范化:也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0,1]之间。...均值标准化(规范化) 零-均值规范化:也叫标准差标准化,经过处理的数据的平均数为0,标准差为1。...转换函数如下: x^{\ast }=\dfrac{x}{10^{k}} 2.1.2 数据离散化处理 一些数据挖掘算法,特别是某些分类算法,要求数据是分类属性形式,如ID3算法、Apriori算法等。...数据离散化处理一般是在数据的取值范围内设定若干个离散的划分点,将取值范围划分为若干离散化的区间,分别用不同的符号或整数值代表落在每个子区间的数值。...连续属性变换成分类属性涉及两个子任务:决定需要多少个分类变量,以及确定如何将连续属性值映射到这些分类值。
与之相对的概念是模型参数,即算法过程中学习的属于这个模型的参数(KNN 中没有模型参数,回归算法有很多模型参数) 如何选择超参数,是机器学习中的永恒问题。...在 sklearn 中使用 KNN 上一节我只是简单的介绍了 sklearn,并创建了一个 KNN 的分类器,今天我们就具体来看看如何使用 sklearn 中的 KNN 分类器。...数据规范化 在正式处理数据之前,我们先来看一个概念-数据规范化 那么什么是数据规范化呢 数据规范化是数据挖掘的一项基本工作,之所以称之为基本,是因为不同评价指标往往具有不同的量纲,数值间的差别可能很大,...其公式为: 新数值 = (原数值 – 极小值)/ (极大值 – 极小值) 离散标准化保留了原来数据中存在的关系,是消除量纲和数据取值范围影响的最简单方法。...如果你不记得独热编码了,可以到前面“数据清洗”一节回顾下。 对于 color 这一列,由于它的数值是 green,red 等字符,也需要采用独热编码,转换成0,1类型数据。
点击关注"故里学Java" 右上角"设为星标"好文章不错过 前边的在《一条SQL查询在MySQL中是怎么执行的》中我们已经介绍了执行过程中涉及的处理模块,包括连接器、分析器、优化器、执行器、存储引擎等。...首先,在执行语句前要先连接数据库,这是第一步中连接器的工作,前面我们也说过,当一个表有更新的时候,跟这个表有关的查询缓存都会失效,所以我们一般不建议使用查询缓存。...> update table demo set c = c + 1 where ID = 2; 接下来我们来看看update语句的执行流程,图中浅色框表示在存储引擎中执行的,深色框代表的是执行器中执行的...如果写完buglog之后,redo log还没写完的时候发生 crash,如果这个时候数据库奔溃了,恢复以后这个事务无效,所以这一行的值还是0,但是binlog里已经记载了这条更新语句的日志,在以后需要用...我们可以看到如果不使用“两阶段提交",那么数据库的状态就会和用日志恢复出来的库不一致。
什么是元数据?元数据(Metadata)是指描述数据的数据,即关于数据的信息。元数据提供了有关数据的结构、内容、质量、位置、所有权、用途等信息。...在不同的上下文中,元数据的定义和用途可能会有所不同,但其核心目的是帮助管理和理解数据。...配置信息(Configuration Information):集群的配置参数,如心跳检测间隔、消息过期时间等。元数据是如何保存的?元数据的保存方式取决于具体的应用场景和技术架构。...常见的保存方式包括:数据库:将元数据存储在关系型数据库或 NoSQL 数据库中。文件系统:将元数据以文件的形式存储在文件系统中。内存:将元数据存储在内存中,适用于需要高性能访问的场景。...分布式存储系统:将元数据存储在分布式存储系统中,如 Hadoop 的 HDFS、Cassandra 等。元数据在 cluster 中是如何分布的?
在这篇文章中,我们将讨论什么是特征缩放以及为什么我们在机器学习中需要特征缩放。我们还将讨论数据的标准化,以及使用scikit-learn实现同样的标准化。 ? 什么是特性缩放?...特征缩放是对输入数据进行标准化/规范化所需要的重要预处理之一。当每一列的值范围非常不同时,我们需要将它们扩展到公共级别。这些值重新规划成公共水平,然后我们可以对输入数据应用进一步的机器学习算法。...在将算法应用到数据上之前,首先需要将数据放到“米”、“公里”或“厘米”的公共尺度上进行有效的分析和预测。 缩放前输入数据 ? 在上面的数据集中,我们可以看到列1和列2中的值有非常不同的范围。...第一列值表示年龄在30到90岁之间,而工资值在30000到15000之间变化。所以两列值的比例是截然不同的。在进一步分析之前,我们需要将其调整到相同的范围。...要获得正确的预测和结果,就需要特征缩放。如果某一列的值与其他列相比非常高,则具有更高值的列的影响将比其他低值列的影响高得多。高强度的特征比低强度的特征重得多,即使它们在确定输出中更为关键。
特征缩放 特征缩放是一种在固定范围内对数据中存在的独立特征进行标准化的技术。...在规范化中只更改数据的范围,而在标准化中会更改数据分布的形状。...而在标准化中,数据被缩放到平均值(μ)为0,标准差(σ)为1(单位方差)。 规范化在0到1之间缩放数据,所有数据都为正。标准化后的数据以零为中心的正负值。 如何选择使用哪种缩放方法呢?...所以上面的例子中,我们可以跳过任何列我们这里选择跳过第一列“red” 独热编码虽然简单,但是页有非常明显的缺点: 假设一列有100个分类变量。现在如果试着把分类变量转换成哑变量,我们会得到99列。...这将增加整个数据集的维度,从而导致维度诅咒。 所以基本上,如果一列中有很多分类变量我们就不应该用这种方法。
文档位于: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.fillna.html 在我们的处理过程中,我们假设每个邮编可能会有不同的均价...其.transform(...)方法高效地对邮编分组,在我们的例子中,分组的依据是各邮编价格数据的平均数。 现在,.fillna(...)方法简单地用这个平均数替代缺失的观测数据即可。 4....更多 插补数据不是填补缺失值的唯一方法。数据对称分布且没有异常值时,才会返回一个合理的值;如果分布比较偏,平均值是有偏差的。衡量集中趋势更好的维度是中位数。...探索模型中变量之间的相互作用时也建议这么处理。 计算机是有限制的:整型值是有上限的(尽管目前在64位机器上这不是个问题),浮点型的精确度也有上限。 数据规范化是让所有的值落在0到1的范围内(闭区间)。...原理 要规范化数据,即让每个值都落在0和1之间,我们减去数据的最小值,并除以样本的范围。统计学上的范围指的是最大值与最小值的差。
实际上我们第一篇的房价预测就属于回归算法,如果把这个模型用于预测,结果是一个连续值而不是有限的分类。...不过习惯命令行操作的工程师直接列出也是一样的。 数据中可以看到第374行,在Horsepower(发动机功率)一列,意外的有NaN未知数据。这样的数据当然是无效的,需要首先进行数据清洗。...大数据转行过来的技术人员都熟悉,数据清洗是保证数据有效性必不可少的手段。 其实这里的NaN并不能完全说意外,我们在使用Pandas打开数据集的时候使用了参数:na_values = "?"...当然这些图需要行业专家的理解和分析。然后为程序人员提供间接帮助。 数据规范化 从刚才的样本数据中,我们可以看出各列的数据,取值范围还是很不均衡的。在进入模型之前,我们需要做数据规范化。...也就是将所有列的数据统一为在同一个取值范围的浮点数。 我们可以利用Pandas中对数据的统计结果做数据的规范化,这样可以省去自己写程序做数据统计。
以下图为例,在正态分布中,大部分人的成绩会集中在中间的区域,少部分人处于两头的位置。正态分布的另一个好处就是,如果你知道了自己的成绩,和整体的正态分布情况,就可以知道自己的成绩在全班中的位置。 ?...这样“总和”这个属性就可以用到后续的数据挖掘计算中。 在这些变换方法中,最简单易用的就是对数据进行规范化处理。下面我来给你讲下如何对数据进行规范化处理。 数据规范化的几种方法 1....那么A的取值范围就被规范化为-0.999到0.088。 上面这三种是数值规范化中常用的几种方式。...在数据变换中,重点是如何将数值进行规范化,有三种常用的规范方法,分别是Min-Max规范化、Z-Score规范化、小数定标规范化。...在最后我给大家推荐了Python的sklearn库,它和NumPy, Pandas都是非常有名的Python库,在数据统计工作中起了很大的作用。
在本教程中,你将了解如何对序列预测数据进行规范化和标准化,以及如何确定将哪些序列用于输入和输出。 完成本教程后,你将知道: 如何归一化和标准化Python中的数据序列。...标准化数据序列 归一化是对数据的原始范围进行重新缩放,以使所有值都在0~1的范围内。 归一化要求你知道或能够准确估计最小和最大可观测值。你可以从你的可获取的数据中估计这些值。...如果你的输出激活函数的范围是[0,1],那么显然你必须确保目标值在该范围内。但是选择适合于目标分布的输出激励函数通常比强制数据符合输出激励函数要好。 - 我应该归一化/标准化/重新缩放数据吗?...例如,如果你有一系列不稳定的数据,则首先应使数据稳定之后,才能进行缩放。在把你的问题转换成一个监督学习问题之后,再对这个序列进行缩放是不正确的,因为对每一列的处理都是不同的。 若缩放有疑问。...Python从零开始扩展机器学习数据 如何在Python中规范化和标准化时间序列数据 如何使用Scikit-Learn在Python中准备数据以进行机器学习 概要 在本教程中,你了解了如何在使用Long
相似但更为丰富 使用时如果使用中文无法正常显示,需要作图前手动指定默认字体为中文,如SimHei Pandas python下最强大的数据分析和探索工具。...如果要实现GPU加速还要配置CUDA Gensim 用于处理语言方面的任务,如文本相似度计算、LDA、Word2Vec等 --贵阳大数据培训-- 数据探索 1、数据质量分析:检查原始数据中是否存在不符合要求的数据...[1]最小-最大规范化,也称离差标准化。x*=(x-min)/(max-min);缺点:异常值影响;之后的范围限制在[min,max]中 [2]零-均值规范化,也称标准差规范化,处理后[0,1]。...[1]最小-最大规范化,也称离差标准化。x*=(x-min)/(max-min);缺点:异常值影响;之后的范围限制在[min,max]中 [2]零-均值规范化,也称标准差规范化,处理后[0,1]。...,隐含层-输出成是线性,特别适合解决分类问题 FNN模糊神经网络 具有模糊权系数或输入信号是模糊两的神经网络,汇聚NN和模糊系统的有点 GMDH神经网络 也称多项式网络,网络结构在训练中变化 ANFIS
层间的数据传递 马克-to-win:一 个数据库中的表对应一个PO(Persistant Object),这好理解。...在Web层的网页,当用户提交表单数据以后,在Controller层,把表单数据放在VO(View Object有人也叫Value Object) 当中,接着调用Service层。...VO相对于网页表单数据,也许对应n个PO,而且和PO数据格式也许不一样。马克-to-win:(表单2012/1/1而数据库中是 2012-1-1)。...马克-to-win:Service层接着调用BO,BO调用DO,(这个过程 应该是涉及的业务范围越来越小,越来越具体,就像中央委托给东北局,东北局再委托给辽宁省,处理某个事一样),DTO在这个过程中承载的数据量也必然越来...马克-to-win:在代码量代码复杂度和系统性能之间做取舍是我们工程师永恒的话题。技术教 会大家,大家起码可以有做选择的机会。
可以从以下三个角度来梳理k-means: 如何确定 K 类的中心点? 如何将其他点划分到k类中? 如何区分k-means与k-近邻算法?...一开始我们是随机指认的,当确定了中心点后,我们就可以按照距离将其它足球队划分到不同的类别中。 在这里我们默认k=3,在工业界k的选择是个难事!但我们可以通过其它方式来确定k,后文会讲到。...: 如果是亚洲区域入选赛12强的队伍,设置为40名 如果没有进入亚洲区域预选赛,设置为50名 ?...根据初始随机选择的k类中心点:中国,韩国,日本,我们计算各俱乐部与三类中心点的距离,各俱乐部就近选择中心点(就有了划分这一列)。划分这一列是我们迭代一次后的聚类结果,显然不是最优。...总结: 如何区分k-means与knn: k-means是聚类算法,knn是有监督的分类算法;聚类没有标签,分类有标签 聚类算法中的k是k类,knn中的k是k个最近的邻居。
可以从以下三个角度来梳理k-means: 如何确定 K 类的中心点? 如何将其他点划分到k类中? 如何区分k-means与k-近邻算法?...一开始我们是随机指认的,当确定了中心点后,我们就可以按照距离将其它足球队划分到不同的类别中。 在这里我们默认k=3,在工业界k的选择是个难事!但我们可以通过其它方式来确定k,后文会讲到。...: 如果是亚洲区域入选赛12强的队伍,设置为40名 如果没有进入亚洲区域预选赛,设置为50名 ?...根据初始随机选择的k类中心点:中国,韩国,日本,我们计算各俱乐部与三类中心点的距离,各俱乐部就近选择中心点(就有了划分这一列)。划分这一列是我们迭代一次后的聚类结果,显然不是最优。...总结 如何区分k-means与knn: k-means是聚类算法,knn是有监督的分类算法;聚类没有标签,分类有标签 聚类算法中的k是k类,knn中的k是k个最近的邻居。
Pandas 是 Python 中很流行的类库,使用它可以进行数据科学计算和数据分。...安装命令如下: pip install pandas 接下来,导入 Pandas 到我们的代码中,代码如下: #可以使用其他的别名, 但是,pd 是官方推荐的别名,也是大家习惯的别名 import pandas...在我们的案例中,我们推断地区并不是很重要,所以,我们可是使用“”空字符串或其他默认值。...如果想了解更多 fillna() 的详细信息参考 pandas.DataFrame.fillna。 使用数字类型的数据,比如,电影的时长,计算像电影平均时长可以帮我们甚至是数据集。...Pandas 还是提供了规范化我们数据类型的方式: data = pd.read_csv('..
在本教程中,您将了解如何使用Python对时间序列数据进行规范化和标准化。 完成本教程后,你将知道: 标准化的局限性和对使用标准化的数据的期望。 需要什么参数以及如何手动计算标准化和标准化值。...如何规范化和标准化Python中的时间序列数据 最低每日温度数据集 这个数据集描述了澳大利亚墨尔本市十年(1981-1990)的最低日温度。 单位是摄氏度,有3650个观测值。...字符,在使用数据集之前必须将其删除。在文本编辑器中打开文件并删除“?”字符。也删除该文件中的任何页脚信息。 规范时间序列数据 规范化是对原始范围的数据进行重新调整,以使所有值都在0和1的范围内。...标准化可能是tve 有用的,甚至在一些机器学习算法中,当你的时间序列数据具有不同尺度的输入值时,也是必需的。...如何使用Python中的scikit-learn来规范化和标准化时间序列数据。 你有任何关于时间序列数据缩放或关于这个职位的问题吗? 在评论中提出您的问题,我会尽力来回答。
如果你能回答所有这六个问题,那么你就可以得到关于主题或对象的任何其他问题的答案。向框架中添加行或列将使分类方案非规范化。 规则2:每一列都有一个简单的泛型模型。...在我们的案例中,框架的每一列都描述了分析目标企业中的一个独立变量。因此,任何一列的基本泛型模型都非常简单:它表示的变量(抽象)与自身相关。 规则3:每个单元模型专门处理其列的泛型模型。...该框架构成了一个干净的规范化分类系统,每一列都是唯一的。没有一个元概念可以分为多个单元。没有冗余。这是使框架成为良好分析工具的一个基本因素。 规则5:不要在单元格之间创建对角线关系。...禁止对角线的结构原因是因为细胞关系是传递的。在逻辑上更改单元格可能会影响同一列中的上下单元格以及同一行中的每个其他单元格。 规则6:不要更改行或列的名称。...不要在通用框架或企业特定框架中更改行或列的名称。如果更改行和列的名称,也会更改受影响行或列的含义。您可以对框架进行反规范化,使其不再全面。 规则7:逻辑是通用的和递归的。 框架的逻辑是通用的。
对于数据预处理而言,Pandas 和 Numpy 基本是必需的。 最适当的方式是,在导入这些库的时候,赋予其缩写的称呼形式,在之后的使用中,这可以节省一定的时间成本。...看看我们的数据。我们有一列动物年龄,范围是 4~17,还有一列动物价值,范围是$48,000-$83,000。价值一栏的数值不仅远大于年龄一栏,而且它还包含更加广阔的数据范围。...这表明,欧式距离将完全由价值这一特征所主导,而忽视年龄数据的主导效果。如果欧式距离在特定机器学习模型中并没有具体作用会怎么样?...这是一个具有明确相关值的分类问题。但如果其取值范围非常大,那么答案是你需要做缩放。 恭喜你,你已经完成了数据预处理的工作! 通过少量的几行代码,你已经领略了数据清洗和预处理的基础。...毫无疑问,在数据预处理这一步中,你可以加入很多自己的想法:你可能会想如何填充缺失值。思考是否缩放特征以及如何缩放特征?是否引入哑变量?是否要对数据做编码?是否编码哑变量……有非常多需要考虑的细节。
领取专属 10元无门槛券
手把手带您无忧上云