首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在java中将Arrow转换为Parquet,反之亦然

在Java中将Arrow转换为Parquet,反之亦然,可以通过使用Apache Arrow和Apache Parquet库来实现。

Apache Arrow是一个内存数据结构和计算平台,用于在不同系统之间高效地传输和处理大规模数据集。它提供了一种统一的数据模型,可以在不同的编程语言和计算框架之间进行数据交换和共享。Arrow的主要优势包括高性能、低内存占用和跨平台支持。

Apache Parquet是一种列式存储格式,用于高效地存储和处理大规模结构化数据。它支持压缩、谓词下推、列式存储和高效的读写操作,适用于大数据分析和数据仓库场景。Parquet的主要优势包括高性能、高压缩比和灵活的数据模型。

要在Java中将Arrow转换为Parquet,可以按照以下步骤进行:

  1. 导入所需的依赖库:
代码语言:txt
复制
import org.apache.arrow.vector.VectorSchemaRoot;
import org.apache.arrow.vector.ipc.ArrowFileReader;
import org.apache.arrow.vector.ipc.ArrowFileWriter;
import org.apache.arrow.vector.ipc.SeekableReadChannel;
import org.apache.arrow.vector.ipc.WriteChannel;
import org.apache.parquet.column.ColumnDescriptor;
import org.apache.parquet.column.ParquetProperties;
import org.apache.parquet.column.page.PageReadStore;
import org.apache.parquet.example.data.Group;
import org.apache.parquet.example.data.simple.SimpleGroupFactory;
import org.apache.parquet.hadoop.ParquetFileWriter;
import org.apache.parquet.hadoop.ParquetReader;
import org.apache.parquet.hadoop.ParquetWriter;
import org.apache.parquet.hadoop.metadata.CompressionCodecName;
import org.apache.parquet.hadoop.metadata.ParquetMetadata;
import org.apache.parquet.hadoop.util.HadoopInputFile;
import org.apache.parquet.hadoop.util.HadoopOutputFile;
import org.apache.parquet.io.ColumnIOFactory;
import org.apache.parquet.io.MessageColumnIO;
import org.apache.parquet.io.ParquetDecodingException;
import org.apache.parquet.io.RecordReader;
import org.apache.parquet.io.api.Binary;
import org.apache.parquet.io.api.RecordMaterializer;
import org.apache.parquet.schema.MessageType;
import org.apache.parquet.schema.PrimitiveType;
import org.apache.parquet.schema.Type;
import org.apache.parquet.schema.Types;
  1. 将Arrow转换为Parquet:
代码语言:txt
复制
// 读取Arrow文件
try (SeekableReadChannel arrowChannel = SeekableReadChannel.fromFile(arrowFilePath);
     ArrowFileReader arrowReader = new ArrowFileReader(arrowChannel, new RootAllocator(Long.MAX_VALUE))) {
    VectorSchemaRoot arrowRoot = arrowReader.getVectorSchemaRoot();
    MessageType parquetSchema = convertArrowSchemaToParquet(arrowRoot.getSchema());

    // 创建Parquet写入器
    try (HadoopOutputFile parquetFile = HadoopOutputFile.fromPath(parquetFilePath, new Configuration());
         ParquetWriter<Group> parquetWriter = createParquetWriter(parquetFile, parquetSchema)) {
        // 逐行读取Arrow数据并写入Parquet文件
        while (arrowReader.loadNextBatch()) {
            writeArrowBatchToParquet(arrowRoot, parquetWriter);
        }
    }
}

// 将Arrow的Schema转换为Parquet的Schema
private static MessageType convertArrowSchemaToParquet(org.apache.arrow.vector.types.pojo.Schema arrowSchema) {
    List<Type> parquetFields = new ArrayList<>();
    for (org.apache.arrow.vector.types.pojo.Field arrowField : arrowSchema.getFields()) {
        Type parquetField = convertArrowFieldToParquet(arrowField);
        parquetFields.add(parquetField);
    }
    return new MessageType("root", parquetFields);
}

// 将Arrow的Field转换为Parquet的Field
private static Type convertArrowFieldToParquet(org.apache.arrow.vector.types.pojo.Field arrowField) {
    PrimitiveType.PrimitiveTypeName parquetType = convertArrowTypeToParquet(arrowField.getFieldType().getTypeID());
    return Types.buildMessage().addField(new PrimitiveType(Type.Repetition.OPTIONAL, parquetType,
            arrowField.getName())).named(arrowField.getName());
}

// 将Arrow的Type转换为Parquet的Type
private static PrimitiveType.PrimitiveTypeName convertArrowTypeToParquet(org.apache.arrow.vector.types.Types.MinorType arrowType) {
    switch (arrowType) {
        case INT:
            return PrimitiveType.PrimitiveTypeName.INT32;
        case BIGINT:
            return PrimitiveType.PrimitiveTypeName.INT64;
        case FLOAT4:
            return PrimitiveType.PrimitiveTypeName.FLOAT;
        case FLOAT8:
            return PrimitiveType.PrimitiveTypeName.DOUBLE;
        case BINARY:
            return PrimitiveType.PrimitiveTypeName.BINARY;
        case STRING:
            return PrimitiveType.PrimitiveTypeName.BINARY;
        // 其他类型根据需要进行转换
        default:
            throw new UnsupportedOperationException("Unsupported Arrow type: " + arrowType);
    }
}

// 创建Parquet写入器
private static ParquetWriter<Group> createParquetWriter(HadoopOutputFile parquetFile, MessageType parquetSchema) throws IOException {
    return ParquetWriter.builder(new GroupWriteSupport(), parquetFile)
            .withType(parquetSchema)
            .withCompressionCodec(CompressionCodecName.SNAPPY)
            .withWriteMode(ParquetFileWriter.Mode.OVERWRITE)
            .build();
}

// 将Arrow的Batch数据写入Parquet文件
private static void writeArrowBatchToParquet(VectorSchemaRoot arrowRoot, ParquetWriter<Group> parquetWriter) throws IOException {
    int numRows = arrowRoot.getRowCount();
    for (int row = 0; row < numRows; row++) {
        Group parquetGroup = convertArrowRowToParquetGroup(arrowRoot, row);
        parquetWriter.write(parquetGroup);
    }
}

// 将Arrow的Row数据转换为Parquet的Group
private static Group convertArrowRowToParquetGroup(VectorSchemaRoot arrowRoot, int row) {
    SimpleGroupFactory groupFactory = new SimpleGroupFactory(arrowRoot.getSchema());
    Group parquetGroup = groupFactory.newGroup();
    for (int col = 0; col < arrowRoot.getFieldVectors().size(); col++) {
        String fieldName = arrowRoot.getFieldVectors().get(col).getField().getName();
        Object fieldValue = convertArrowValueToParquetValue(arrowRoot.getFieldVectors().get(col), row);
        parquetGroup.append(fieldName, fieldValue);
    }
    return parquetGroup;
}

// 将Arrow的Value转换为Parquet的Value
private static Object convertArrowValueToParquetValue(ValueVector arrowVector, int index) {
    Object value = arrowVector.getObject(index);
    if (arrowVector.isNull(index)) {
        return null;
    } else if (arrowVector instanceof VarCharVector) {
        return Binary.fromConstantByteArray(((VarCharVector) arrowVector).get(index));
    } else {
        return value;
    }
}

要在Java中将Parquet转换为Arrow,可以按照以下步骤进行:

  1. 导入所需的依赖库:
代码语言:txt
复制
import org.apache.arrow.memory.RootAllocator;
import org.apache.arrow.vector.VectorSchemaRoot;
import org.apache.arrow.vector.ipc.ArrowFileWriter;
import org.apache.arrow.vector.ipc.ArrowStreamWriter;
import org.apache.arrow.vector.ipc.SeekableWriteChannel;
import org.apache.arrow.vector.ipc.message.ArrowRecordBatch;
import org.apache.parquet.column.ColumnDescriptor;
import org.apache.parquet.column.page.PageReadStore;
import org.apache.parquet.hadoop.ParquetFileReader;
import org.apache.parquet.hadoop.metadata.ParquetMetadata;
import org.apache.parquet.io.ColumnIOFactory;
import org.apache.parquet.io.MessageColumnIO;
import org.apache.parquet.io.RecordReader;
import org.apache.parquet.io.api.RecordMaterializer;
import org.apache.parquet.schema.MessageType;
import org.apache.parquet.schema.Type;
import org.apache.parquet.schema.Types;
  1. 将Parquet转换为Arrow:
代码语言:txt
复制
// 读取Parquet文件
try (SeekableReadChannel parquetChannel = SeekableReadChannel.fromFile(parquetFilePath);
     ParquetFileReader parquetReader = ParquetFileReader.open(parquetChannel)) {
    ParquetMetadata parquetMetadata = parquetReader.getFooter();
    MessageType parquetSchema = parquetMetadata.getFileMetaData().getSchema();

    // 创建Arrow写入器
    try (SeekableWriteChannel arrowChannel = SeekableWriteChannel.fromFile(arrowFilePath);
         ArrowFileWriter arrowWriter = new ArrowFileWriter(new RootAllocator(Long.MAX_VALUE), null,
                 new ArrowStreamWriter(arrowChannel, new RootAllocator(Long.MAX_VALUE)))) {
        // 写入Arrow文件头
        arrowWriter.start(parquetSchema, null);

        // 逐行读取Parquet数据并写入Arrow文件
        PageReadStore pageReadStore;
        while ((pageReadStore = parquetReader.readNextRowGroup()) != null) {
            RecordReader<Group> recordReader = createParquetRecordReader(parquetSchema, pageReadStore);
            Group parquetGroup;
            while ((parquetGroup = recordReader.read()) != null) {
                ArrowRecordBatch arrowBatch = convertParquetGroupToArrowBatch(parquetGroup, parquetSchema);
                arrowWriter.writeBatch(arrowBatch);
            }
        }

        // 写入Arrow文件尾
        arrowWriter.end();
    }
}

// 创建Parquet记录读取器
private static RecordReader<Group> createParquetRecordReader(MessageType parquetSchema, PageReadStore pageReadStore) {
    MessageColumnIO columnIO = new ColumnIOFactory().getColumnIO(parquetSchema);
    RecordMaterializer<Group> recordMaterializer = columnIO.getRecordMaterializer();
    return columnIO.getRecordReader(pageReadStore, recordMaterializer);
}

// 将Parquet的Group转换为Arrow的RecordBatch
private static ArrowRecordBatch convertParquetGroupToArrowBatch(Group parquetGroup, MessageType parquetSchema) {
    VectorSchemaRoot arrowRoot = VectorSchemaRoot.create(convertParquetSchemaToArrowSchema(parquetSchema),
            new RootAllocator(Long.MAX_VALUE));
    for (int col = 0; col < parquetGroup.getFieldRepetitionCount(); col++) {
        String fieldName = parquetGroup.getType().getFieldName(col);
        Object fieldValue = convertParquetValueToArrowValue(parquetGroup.getValueToString(col, 0));
        arrowRoot.getFieldVectors().get(col).setSafe(0, fieldValue);
    }
    arrowRoot.setRowCount(1);
    return new ArrowRecordBatch(1, arrowRoot);
}

// 将Parquet的Schema转换为Arrow的Schema
private static org.apache.arrow.vector.types.pojo.Schema convertParquetSchemaToArrowSchema(MessageType parquetSchema) {
    org.apache.arrow.vector.types.pojo.Schema.Builder arrowSchemaBuilder = org.apache.arrow.vector.types.pojo.Schema.builder();
    for (Type parquetField : parquetSchema.getFields()) {
        org.apache.arrow.vector.types.pojo.Field arrowField = convertParquetFieldToArrowField(parquetField);
        arrowSchemaBuilder.addField(arrowField);
    }
    return arrowSchemaBuilder.build();
}

// 将Parquet的Field转换为Arrow的Field
private static org.apache.arrow.vector.types.pojo.Field convertParquetFieldToArrowField(Type parquetField) {
    org.apache.arrow.vector.types.pojo.Field.Builder arrowFieldBuilder = org.apache.arrow.vector.types.pojo.Field.newBuilder();
    arrowFieldBuilder.setName(parquetField.getName());
    arrowFieldBuilder.setNullable(true); // Parquet中的字段都是可空的
    arrowFieldBuilder.setType(convertParquetTypeToArrowType(parquetField.asPrimitiveType()));
    return arrowFieldBuilder.build();
}

// 将Parquet的Type转换为Arrow的Type
private static org.apache.arrow.vector.types.pojo.ArrowType convertParquetTypeToArrowType(PrimitiveType parquetType) {
    switch (parquetType.getPrimitiveTypeName()) {
        case INT32:
            return org.apache.arrow.vector.types.pojo.ArrowType.Int32.INSTANCE;
        case INT64:
            return org.apache.arrow.vector.types.pojo.ArrowType.Int64.INSTANCE;
        case FLOAT:
            return org.apache.arrow.vector.types.pojo.ArrowType.Float.INSTANCE;
        case DOUBLE:
            return org.apache.arrow.vector.types.pojo.ArrowType.Double.INSTANCE;
        case BINARY:
            return org.apache.arrow.vector.types.pojo.ArrowType.Binary.INSTANCE;
        // 其他类型根据需要进行转换
        default:
            throw new UnsupportedOperationException("Unsupported Parquet type: " + parquetType.getPrimitiveTypeName());
    }
}

// 将Parquet的Value转换为Arrow的Value
private static Object convertParquetValueToArrowValue(String parquetValue) {
    // 根据Parquet的数据类型进行转换
    return parquetValue;
}

以上是在Java中将Arrow转换为Parquet,反之亦然的完整步骤和代码示例。这些步骤涵盖了读取Arrow和Parquet文件、转换Schema、逐行读取数据、转换数据类型等关键操作。通过使用Apache Arrow和Apache Parquet库,可以实现高效、灵活的数据转换和处理。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 基于AIGC写作尝试:深入理解 Apache Arrow

    在当前的数据驱动时代,大量的数据需要在不同系统和应用程序之间进行交换和共享。这些数据可能来自于不同的源头,如传感器、数据库、文件等,具有不同的格式、大小和结构;不同系统和编程语言的运行环境也可能存在差异,如操作系统、硬件架构等,进一步增加了数据交换的复杂度和难度。为了将这些数据有效地传输和处理,需要一个高性能的数据交换格式,以提高数据交换和处理的速度和效率。传统上,数据交换通常采用文本格式,如CSV、XML、JSON等,但它们存在解析效率低、存储空间占用大、数据类型限制等问题,对于大规模数据的传输和处理往往效果不佳。因此,需要一种高效的数据交换格式,可以快速地将数据从一个系统或应用程序传输到另一个系统或应用程序,并能够支持不同编程语言和操作系统之间的交互。

    04
    领券