在Java中将Avro转换为ORC可以通过使用Apache Hive来实现。Apache Hive是一个基于Hadoop的数据仓库基础设施,它提供了类似于SQL的查询语言HiveQL,可以将Avro数据转换为ORC格式。
下面是一个简单的示例代码,展示了如何在Java中使用Apache Hive将Avro转换为ORC:
import org.apache.hadoop.hive.ql.exec.vector.VectorizedRowBatch;
import org.apache.hadoop.hive.ql.io.orc.OrcFile;
import org.apache.hadoop.hive.ql.io.orc.OrcStruct;
import org.apache.hadoop.hive.ql.io.orc.Writer;
import org.apache.hadoop.hive.serde2.avro.AvroDeserializer;
import org.apache.hadoop.hive.serde2.avro.AvroSerdeUtils;
import org.apache.hadoop.hive.serde2.avro.AvroTableUtils;
import org.apache.hadoop.hive.serde2.avro.AvroUtilities;
import org.apache.hadoop.hive.serde2.avro.AvroWrapper;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.orc.TypeDescription;
import java.io.IOException;
public class AvroToOrcConverter implements Tool {
private Configuration conf;
public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new AvroToOrcConverter(), args);
System.exit(exitCode);
}
@Override
public int run(String[] args) throws Exception {
JobConf jobConf = new JobConf(getConf(), AvroToOrcConverter.class);
String[] remainingArgs = new GenericOptionsParser(jobConf, args).getRemainingArgs();
if (remainingArgs.length != 2) {
System.err.println("Usage: AvroToOrcConverter <input path> <output path>");
return 1;
}
Job job = Job.getInstance(jobConf);
job.setJarByClass(AvroToOrcConverter.class);
job.setJobName("Avro to ORC Converter");
// 设置输入路径和格式
FileInputFormat.addInputPath(job, new Path(remainingArgs[0]));
job.setInputFormatClass(TextInputFormat.class);
// 设置输出路径和格式
FileOutputFormat.setOutputPath(job, new Path(remainingArgs[1]));
job.setOutputFormatClass(TextOutputFormat.class);
// 设置Mapper和Reducer类
job.setMapperClass(AvroToOrcMapper.class);
job.setReducerClass(AvroToOrcReducer.class);
// 设置Mapper输出键值对类型
job.setMapOutputKeyClass(NullWritable.class);
job.setMapOutputValueClass(OrcStruct.class);
// 设置Reducer输出键值对类型
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(OrcStruct.class);
return job.waitForCompletion(true) ? 0 : 1;
}
@Override
public Configuration getConf() {
return conf;
}
@Override
public void setConf(Configuration conf) {
this.conf = conf;
}
public static class AvroToOrcMapper extends Mapper<LongWritable, Text, NullWritable, OrcStruct> {
private AvroDeserializer avroDeserializer;
private ObjectInspector avroInspector;
private OrcStruct orcStruct;
private VectorizedRowBatch batch;
private Writer writer;
@Override
protected void setup(Context context) throws IOException, InterruptedException {
Configuration conf = context.getConfiguration();
// 从Avro模式文件中获取Avro模式
String avroSchemaFile = conf.get("avro.schema.file");
Schema avroSchema = new Schema.Parser().parse(new File(avroSchemaFile));
// 从ORC模式文件中获取ORC模式
String orcSchemaFile = conf.get("orc.schema.file");
TypeDescription orcSchema = TypeDescription.fromString(FileUtils.readFileToString(new File(orcSchemaFile), "UTF-8"));
// 创建Avro反序列化器和对象检查器
avroDeserializer = new AvroDeserializer(avroSchema);
avroInspector = AvroTableUtils.getAvroDeserializerObjectInspector(avroSchema);
// 创建ORC结构和批处理
orcStruct = (OrcStruct) OrcStruct.createValue(orcSchema);
batch = orcSchema.createRowBatch();
// 创建ORC写入器
Path outputPath = FileOutputFormat.getOutputPath(context);
writer = OrcFile.createWriter(outputPath, OrcFile.writerOptions(conf).setSchema(orcSchema));
}
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 将Avro记录转换为ORC记录
GenericRecord avroRecord = avroDeserializer.deserialize(value.toString());
AvroWrapper<GenericRecord> avroWrapper = new AvroWrapper<>(avroRecord);
Object orcObject = AvroUtilities.ewToOrc(avroWrapper, avroInspector, orcStruct, batch);
// 将ORC记录写入ORC文件
int rowIndex = batch.size++;
for (int fieldIndex = 0; fieldIndex < orcStruct.getNumFields(); fieldIndex++) {
((OrcStruct) batch.cols[fieldIndex]).setFieldValue(rowIndex, ((OrcStruct) orcObject).getFieldValue(fieldIndex));
}
if (batch.size == batch.getMaxSize()) {
writer.addRowBatch(batch);
batch.reset();
}
}
@Override
protected void cleanup(Context context) throws IOException, InterruptedException {
if (batch.size > 0) {
writer.addRowBatch(batch);
}
writer.close();
}
}
public static class AvroToOrcReducer extends Reducer<NullWritable, OrcStruct, NullWritable, OrcStruct> {
@Override
protected void reduce(NullWritable key, Iterable<OrcStruct> values, Context context) throws IOException, InterruptedException {
for (OrcStruct value : values) {
context.write(key, value);
}
}
}
}
在上述代码中,我们使用了Apache Hive提供的AvroDeserializer和AvroTableUtils来处理Avro数据的反序列化和对象检查。我们还使用了Apache ORC提供的Writer和TypeDescription来创建ORC文件和ORC模式。
要使用该代码,您需要将Avro模式文件和ORC模式文件作为输入参数传递给程序。Avro模式文件应该是一个JSON文件,描述了Avro数据的结构。ORC模式文件应该是一个文本文件,描述了ORC数据的结构。
您可以使用以下命令来运行该程序:
hadoop jar avro-to-orc-converter.jar AvroToOrcConverter <input path> <output path> -Davro.schema.file=<avro schema file> -Dorc.schema.file=<orc schema file>
其中,<input path>
是包含Avro数据的输入路径,<output path>
是输出ORC文件的路径,<avro schema file>
是Avro模式文件的路径,<orc schema file>
是ORC模式文件的路径。
请注意,这只是一个简单的示例代码,您可能需要根据您的实际需求进行修改和调整。此外,您还需要安装和配置Apache Hive和Apache ORC来运行此代码。
希望这个答案能够满足您的需求。如果您有任何其他问题,请随时提问。
领取专属 10元无门槛券
手把手带您无忧上云