首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在PCR function R PLS包中使用预定义的拆分

是指在PCR(Partial Least Squares Regression)函数中使用预先定义好的数据集拆分方法。

PCR是一种统计建模方法,用于建立预测模型。它通过将自变量(特征)与因变量(目标)之间的关系分解为一系列主成分,然后使用这些主成分来建立模型。PCR在许多领域中都有广泛的应用,包括化学、生物信息学、医学等。

在PCR function R PLS包中,使用预定义的拆分可以帮助我们将数据集划分为训练集和测试集,以便进行模型的训练和评估。这样可以更好地评估模型的性能和泛化能力。

预定义的拆分可以根据不同的需求进行设置,常见的拆分方法包括随机拆分、分层拆分等。随机拆分是将数据集随机划分为训练集和测试集,分层拆分是根据数据的某些特征进行划分,以保证训练集和测试集中的样本分布相似。

在PCR function R PLS包中,可以使用以下函数进行预定义的拆分:

  1. createDataPartition:该函数可以根据指定的因变量和拆分比例创建一个数据集拆分对象。可以指定拆分比例、随机种子等参数。
  2. train_test_split:该函数可以将数据集划分为训练集和测试集。可以指定拆分比例、随机种子等参数。
  3. cvpartition:该函数可以创建一个交叉验证拆分对象,用于交叉验证模型。可以指定拆分的折数、随机种子等参数。

对于PCR function R PLS包中使用预定义的拆分,可以使用以下腾讯云相关产品和产品介绍链接地址:

  1. 腾讯云机器学习平台(https://cloud.tencent.com/product/tiia):提供了丰富的机器学习算法和工具,包括PCR等方法,可用于构建预测模型。
  2. 腾讯云数据集成服务(https://cloud.tencent.com/product/dts):提供了数据集成和转换服务,可用于数据预处理和准备,以便进行PCR建模。
  3. 腾讯云模型训练(https://cloud.tencent.com/product/tiia):提供了模型训练和优化服务,可用于PCR模型的训练和调优。

请注意,以上仅为示例,实际使用时应根据具体需求选择适合的腾讯云产品和服务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据|附代码数据

在实践中,在选择成分数量时可能需要更加谨慎。例如,交叉验证是一种广泛使用的方法,稍后将在本示例中进行说明。目前,上图显示具有两个成分的PLSR解释了观察到的大部分方差y。计算双组分模型的拟合因变量。...PCR曲线一致性较高的事实表明,为什么使用两种成分的PCR相对于PLSR在拟合时表现很差。PCR构建成分以便最好地解释X,因此,前两个成分忽略了数据拟合中观察到的重要信息y。...拟合更多成分随着在PCR中添加更多成分,它必然会更好地拟合原始数据y,这仅仅是因为在某些时候,大多数重要的预测信息X将存在于主要成分中。例如,使用10个成分时,两种方法的残差远小于两个成分的残差。...PLS权重是定义PLS分量的原始变量的线性组合,即,它们描述了PLSR中的每个分量依赖于原始变量的权重。类似地,PCA载荷描述了PCR中每个成分依赖于原始变量的强度。...R语言实现偏最小二乘回归法 partial least squares (PLS)回归Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择偏最小二乘回归(PLSR)和主成分回归(PCR)

1.3K30
  • MATLAB偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据|附代码数据

    PCR曲线一致性较高的事实表明,为什么使用两种成分的PCR相对于PLSR在拟合时表现很差。PCR构建成分以便最好地解释X,因此,前两个成分忽略了数据拟合中观察到的重要信息y。...拟合更多成分随着在PCR中添加更多成分,它必然会更好地拟合原始数据y,这仅仅是因为在某些时候,大多数重要的预测信息X将存在于主要成分中。例如,使用10个成分时,两种方法的残差远小于两个成分的残差。...PLS权重是定义PLS分量的原始变量的线性组合,即,它们描述了PLSR中的每个分量依赖于原始变量的权重。类似地,PCA载荷描述了PCR中每个成分依赖于原始变量的强度。...R语言实现偏最小二乘回归法 partial least squares (PLS)回归Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择偏最小二乘回归(PLSR)和主成分回归(PCR)...R语言实现偏最小二乘回归法 partial least squares (PLS)回归Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择偏最小二乘回归(PLSR)和主成分回归(PCR)

    1.2K00

    MATLAB偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据|附代码数据

    在实践中,在选择成分数量时可能需要更加谨慎。例如,交叉验证是一种广泛使用的方法,稍后将在本示例中进行说明。目前,上图显示具有两个成分的PLSR解释了观察到的大部分方差y。计算双组分模型的拟合因变量。...然而,使用相同数量的成分,PLSR做得更好。实际上,观察上图中拟合值的水平分布,使用两个分量的PCR几乎不比使用常数模型好。回归的r方值证实了这一点。...PCR曲线一致性较高的事实表明,为什么使用两种成分的PCR相对于PLSR在拟合时表现很差。PCR构建成分以便最好地解释X,因此,前两个成分忽略了数据拟合中观察到的重要信息y。...拟合更多成分 随着在PCR中添加更多成分,它必然会更好地拟合原始数据y,这仅仅是因为在某些时候,大多数重要的预测信息X将存在于主要成分中。例如,使用10个成分时,两种方法的残差远小于两个成分的残差。...PLS权重是定义PLS分量的原始变量的线性组合,即,它们描述了PLSR中的每个分量依赖于原始变量的权重。 类似地,PCA载荷描述了PCR中每个成分依赖于原始变量的强度。

    43800

    Python用偏最小二乘回归Partial Least Squares,PLS分析桃子近红外光谱数据可视化

    一旦校准完成且稳健,就可以继续使用近红外数据预测感兴趣参数的值。PCR只是使用通过PCA得到的若干主成分构建的回归模型。显然,这并不是最佳选择,而PLS就是解决这个问题的方法。...在本文中,我将向您展示如何使用Python构建一个简单的PLS回归模型。以下是我们将要做的概述。展示PLS的基本代码讨论我们要分析的数据及所需的预处理。...我们将使用新鲜桃子水果的近红外光谱,其关联的Brix值与PCR相同。这是我们要校准的量。...为了优化我们的PLS回归参数(例如预处理步骤和成分数量),我们将跟踪这些指标,最常见的是均方差(MSE)。还有一件事。在实际代码中,各种数组X, y等通常是从电子表格中读取的numpy数组。...其次,它找到最小化均方误差的组件数,并使用该值再次运行偏最小二乘回归。在第二次计算中,计算了一堆指标并将其打印出来。让我们通过将最大组件数设置为40来运行此函数。

    73300

    MATLAB偏最小二乘回归(PLSR)和主成分回归(PCR)分析光谱数据|附代码数据

    在实践中,在选择成分数量时可能需要更加谨慎。例如,交叉验证是一种广泛使用的方法,稍后将在本示例中进行说明。目前,上图显示具有两个成分的PLSR解释了观察到的大部分方差y。计算双组分模型的拟合因变量。...然而,使用相同数量的成分,PLSR做得更好。实际上,观察上图中拟合值的水平分布,使用两个分量的PCR几乎不比使用常数模型好。回归的r方值证实了这一点。...PCR曲线一致性较高的事实表明,为什么使用两种成分的PCR相对于PLSR在拟合时表现很差。PCR构建成分以便最好地解释X,因此,前两个成分忽略了数据拟合中观察到的重要信息y。...拟合更多成分 随着在PCR中添加更多成分,它必然会更好地拟合原始数据y,这仅仅是因为在某些时候,大多数重要的预测信息X将存在于主要成分中。例如,使用10个成分时,两种方法的残差远小于两个成分的残差。...PLS权重是定义PLS分量的原始变量的线性组合,即,它们描述了PLSR中的每个分量依赖于原始变量的权重。 类似地,PCA载荷描述了PCR中每个成分依赖于原始变量的强度。

    41000

    偏最小二乘回归(PLSR)和主成分回归(PCR)

    然而,使用相同数量的组件,PLSR在安装方面做得更好y。实际上,观察上图中拟合值的水平散射,使用两个分量的PCR几乎不比使用常数模型好。两次回归的r平方值证实了这一点。...PCR曲线一致性较高的事实表明,为什么使用两种成分的PCR相对于PLSR在拟合时表现如此糟糕y。PCR构建组件以便最好地解释X,因此,前两个组件忽略了数据中适合观察到的重要信息y。...适合更多组件 随着在PCR中添加更多组件,它必然会更好地拟合原始数据y,这仅仅是因为在某些时候,大多数重要的预测信息X将存在于主要组件中。...这取决于您考虑的模型的哪个方面。 PLS权重是定义PLS分量的原始变量的线性组合,即,它们描述了PLSR中的每个分量依赖于原始变量以及在什么方向上的强度。 ?...对于本例中使用的数据,PLSR和PCR所需的组件数量之间的差异不是很大,PLS权重和PCA负载似乎选择了相同的变量。其他数据可能并非如此。

    2.3K10

    Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择|附代码数据

    步骤建立PLS回归模型PLS的K-折交叉验证PLS的蒙特卡洛交叉验证(MCCV)。PLS的双重交叉验证(DCV)使用蒙特卡洛抽样方法进行离群点检测使用CARS方法进行变量选择。...使用CARS方法进行变量选择。A=6;fold=5;car(X,y,A,fold);结果解释。optLV:最佳模型的LV数量vsel:选定的变量(X中的列)。...R语言实现LASSO回归分析Python用PyMC3实现贝叶斯线性回归模型使用R语言进行多项式回归、非线性回归模型曲线拟合R语言中的偏最小二乘回归PLS-DAR语言生态学建模:增强回归树(BRT)预测短鳍鳗生存分布和影响因素...R语言实现偏最小二乘回归法 partial least squares (PLS)回归Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择偏最小二乘回归(PLSR)和主成分回归(PCR)...R语言如何找到患者数据中具有差异的指标?

    1.2K00

    R语言中的偏最小二乘回归PLS-DA

    主成分回归(PCR)的方法 本质上是使用第一个方法的普通最小二乘(OLS)拟合来自预测变量的主成分(PC)(点击文末“阅读原文”获取完整代码数据)。 这带来许多优点: 预测变量的数量实际上没有限制。...让我们开始使用R 癌症/无癌标签(编码为-1 / 1)存储在不同的文件中,因此我们可以将其直接附加到完整的数据集,然后使用公式语法来训练模型。...在这种情况下,PLS-DA和PCA-DA表现出最好的性能(准确度为63-95%),并且这两种模型在诊断新血清样品中的癌症方面都表现出色。...总而言之,我们将使用PLS-DA和PCA-DA中预测的变量重要性(ViP)确定十种最能诊断癌症的蛋白质。 上面的PLS-DA ViP图清楚地将V1184与所有其他蛋白质区分开。...这可能是一个有趣的癌症生物标志物。当然,必须进行许多其他测试和模型来提供可靠的诊断工具。 本文选自《R语言中的偏最小二乘回归PLS-DA》。

    34610

    Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择|附代码数据

    PLS的双重交叉验证(DCV)使用蒙特卡洛抽样方法进行离群点检测使用CARS方法进行变量选择。使用移动窗口PLS(MWPLS)进行变量选择。...使用CARS方法进行变量选择。A=6;fold=5;car(X,y,A,fold);结果解释。optLV:最佳模型的LV数量vsel:选定的变量(X中的列)。...R语言实现LASSO回归分析Python用PyMC3实现贝叶斯线性回归模型使用R语言进行多项式回归、非线性回归模型曲线拟合R语言中的偏最小二乘回归PLS-DAR语言生态学建模:增强回归树(BRT)预测短鳍鳗生存分布和影响因素...R语言实现偏最小二乘回归法 partial least squares (PLS)回归Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择偏最小二乘回归(PLSR)和主成分回归(PCR)...R语言如何找到患者数据中具有差异的指标?

    1.1K20

    Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择|附代码数据

    PLS的双重交叉验证(DCV) 使用蒙特卡洛抽样方法进行离群点检测 使用CARS方法进行变量选择。 使用移动窗口PLS(MWPLS)进行变量选择。...使用CARS方法进行变量选择。 A=6; fold=5; car(X,y,A,fold); 结果解释。 optLV:最佳模型的LV数量 vsel:选定的变量(X中的列)。...预测心脏病数据和可视化分析 基于R语言实现LASSO回归分析 Python用PyMC3实现贝叶斯线性回归模型 使用R语言进行多项式回归、非线性回归模型曲线拟合 R语言中的偏最小二乘回归PLS-DAR语言生态学建模...:增强回归树(BRT)预测短鳍鳗生存分布和影响因素 R语言实现偏最小二乘回归法 partial least squares (PLS)回归 Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择...偏最小二乘回归(PLSR)和主成分回归(PCR) R语言如何找到患者数据中具有差异的指标?

    1.2K00

    Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择|附代码数据

    步骤建立PLS回归模型PLS的K-折交叉验证PLS的蒙特卡洛交叉验证(MCCV)。PLS的双重交叉验证(DCV)使用蒙特卡洛抽样方法进行离群点检测使用CARS方法进行变量选择。...使用CARS方法进行变量选择。A=6;fold=5;car(X,y,A,fold);结果解释。optLV:最佳模型的LV数量vsel:选定的变量(X中的列)。...R语言实现LASSO回归分析Python用PyMC3实现贝叶斯线性回归模型使用R语言进行多项式回归、非线性回归模型曲线拟合R语言中的偏最小二乘回归PLS-DAR语言生态学建模:增强回归树(BRT)预测短鳍鳗生存分布和影响因素...R语言实现偏最小二乘回归法 partial least squares (PLS)回归Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择偏最小二乘回归(PLSR)和主成分回归(PCR)...R语言如何找到患者数据中具有差异的指标?

    42900

    Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择|附代码数据

    PLS的双重交叉验证(DCV) 使用蒙特卡洛抽样方法进行离群点检测 使用CARS方法进行变量选择。 使用移动窗口PLS(MWPLS)进行变量选择。...使用CARS方法进行变量选择。 A=6; fold=5; car(X,y,A,fold); 结果解释。 optLV:最佳模型的LV数量 vsel:选定的变量(X中的列)。...预测心脏病数据和可视化分析 基于R语言实现LASSO回归分析 Python用PyMC3实现贝叶斯线性回归模型 使用R语言进行多项式回归、非线性回归模型曲线拟合 R语言中的偏最小二乘回归PLS-DAR语言生态学建模...:增强回归树(BRT)预测短鳍鳗生存分布和影响因素 R语言实现偏最小二乘回归法 partial least squares (PLS)回归 Matlab中的偏最小二乘法(PLS)回归模型,离群点检测和变量选择...偏最小二乘回归(PLSR)和主成分回归(PCR) R语言如何找到患者数据中具有差异的指标?

    88900

    【视频讲解】偏最小二乘结构方程模型PLS-SEM分析白茶产业数字化对共同富裕的影响|附代码数据

    缺点: PLS估计不再是因变量的线性函数,其优良特性与非线性估计的特性仍在研究中,这可能使得PLS在某些复杂模型中的解释性受到限制。...一旦校准完成且稳健,就可以继续使用近红外数据预测感兴趣参数的值。 PCR只是使用通过PCA得到的若干主成分构建的回归模型。显然,这并不是最佳选择,而PLS就是解决这个问题的方法。...我们将使用新鲜桃子水果的近红外光谱,其关联的Brix值与PCR相同。这是我们要校准的量。...plt.title('PLS') plt.xlim(left=-1) plt.show() # 使用最佳组件数定义PLS对象 pls_opt...这可以使用 =: 运算符('定义为')来完成。请注意,这确实会改变模型中自由参数的数量,因为这些只是现有参数的乘积。为了看哪个估计要相乘,我们必须通过将变量预乘以任意标签来使用“参数标签”。

    12300

    R语言中的岭回归、套索回归、主成分回归:线性模型选择和正则化

    p=9913 ---- 概述和定义 在本课程中,我们将考虑一些线性模型的替代拟合方法,除了通常的  普通最小二乘法。这些替代方法有时可以提供更好的预测准确性和模型可解释性。...选择最佳模型 上面提到的三种算法中的每一种都需要我们手动确定哪种模型效果最好。如前所述,使用训练误差时,具有最多预测值的模型通常具有最小的RSS和最大的R ^ 2。...PLS通过对与因变量最密切相关的变量赋予更高的权重来实现此目的。 实际上,PLS的性能不比岭回归或PCR好。这是因为即使PLS可以减少偏差,它也有可能增加方差,因此总体收益并没有真正的区别。...解释高维结果 我们必须始终谨慎对待报告获得的模型结果的方式,尤其是在高维设置中。在这种情况下,多重共线性问题非常严重,因为模型中的任何变量都可以写为模型中所有其他变量的线性组合。...我们可以使用内置的绘图功能来绘制RSS,adj R ^ 2,  C p,AIC和BIC。 注意:上面显示的拟合度是(除R ^ 2以外)所有测试误差的估计。

    3.3K00

    R语言中的偏最小二乘回归PLS-DA

    p=8890 主成分回归(PCR)的方法 本质上是使用第一个方法的普通最小二乘(OLS)拟合 来自预测变量的主成分(PC)。这带来许多优点: 预测变量的数量实际上没有限制。...相关的预测变量不会破坏回归拟合。  但是,在许多情况下,执行类似于PCA的分解要明智得多。 今天,我们将 在Arcene数据集上执行PLS-DA,  其中包含100个观察值和10,000个解释变量。...让我们开始使用R 癌症/无癌标签(编码为-1 / 1)存储在不同的文件中,因此我们可以将其直接附加到完整的数据集,然后使用公式语法来训练模型。...在这种情况下,PLS-DA和PCA-DA表现出最好的性能(准确度为63-95%),并且这两种模型在诊断新血清样品中的癌症方面都表现出色。...总而言之,我们将使用PLS-DA和PCA-DA中预测的可变重要性(ViP)确定十种最能诊断癌症的蛋白质。  上面的PLS-DA ViP图清楚地将V1184与所有其他蛋白质区分开。

    1.8K11

    数据分析师需要掌握的10个统计学知识

    也就是说, Y不监督主成分的提取,因此,最能解释预测因子的方向,对于预测输出来说不一定是最好的(即使经常假设)。 偏最小二乘法(PLS)是PCR的一种替代方法。...与PCR一样,PLS是 一种 降 维 方法,它首先识别一组新的较小的特征,这些特征是原始特征的线性组合,然后通过最小二乘法拟合一个线性模型,具备新的M个特征。...然而,与PCR不同的是,PLS利用Y变量来识别新的特征。...例如,分段多项式函数是,在每个子域上,函数都是多项式函数,并且每个多项式都是不同的。 样条曲线是由多项式定义分段的特殊函数。在计算机图形学中,样条曲线是指一个分段多项式参数曲线。...在算法学习中,它们被称为无监督,要自己在提供的数据中找出模式。聚类是无监督学习的一个例子,在这种学习中,不同的数据集被集中到一组密切相关的项目中。以下是最广泛使用的无监督学习算法。 ?

    1.4K20

    R语言中的偏最小二乘回归PLS-DA

    p=8890 主成分回归(PCR)的方法 本质上是使用第一个方法的普通最小二乘(OLS)拟合来自预测变量的主成分(PC)(点击文末“阅读原文”获取完整代码数据)。...今天,我们将 在Arcene数据集上执行PLS-DA, 其中包含100个观察值和10,000个解释变量。...让我们开始使用R 癌症/无癌标签(编码为-1 / 1)存储在不同的文件中,因此我们可以将其直接附加到完整的数据集,然后使用公式语法来训练模型。...在这种情况下,PLS-DA和PCA-DA表现出最好的性能(准确度为63-95%),并且这两种模型在诊断新血清样品中的癌症方面都表现出色。...总而言之,我们将使用PLS-DA和PCA-DA中预测的变量重要性(ViP)确定十种最能诊断癌症的蛋白质。 上面的PLS-DA ViP图清楚地将V1184与所有其他蛋白质区分开。

    9010

    拓端tecdat|R语言 PCA(主成分分析),CA(对应分析)夫妻职业差异和马赛克图可视化

    它也可以定义为用图像的方式展示分类型数据。 当变量是类别变量时,且数目多于三个的时候,可使用马赛克图。马赛克图中,嵌套矩阵面积正比于单元格频率,其中该频率即多维列联表中的频率。...颜色和阴影可表示拟合模型的残差值。 我们可以将其结果用马赛克图来形象化。 plot(tM) 丈夫在行中,妻子在列中。...在第二步中,我们做相同的事情,在列中 N/apply(N,2,sum)) 中心: C0=C-Cbar 主成分分析 然后我们可以做一个主成分分析 PCA(matC0 看个人的可视化。...> plot(C[,1:2]) 结果如下 > afc=CA(N) ---- ​ 最受欢迎的见解 1.matlab偏最小二乘回归(PLSR)和主成分回归(PCR) 2.R语言高维数据的主成分pca、...elastic-net模型 7.r语言中的偏最小二乘回归pls-da数据分析 8.r语言中的偏最小二乘pls回归算法 9.R语言线性判别分析(LDA),二次判别分析(QDA)和正则判别分析(RDA)

    80740

    独家 | 为你介绍7种流行的线性回归收缩与选择方法(附代码)

    Hastie等人的网站 http://web.stanford.edu/~hastie/ElemStatLearn/ 我们将首先导入本文中使用的模块,加载数据并将其拆分为训练和测试集,分别保留目标和特征...对于专注于预测的模型,测试数据上的(可能是交叉验证的)错误是常见的选择。 由于最佳子集回归没有在任何Python包中实现,我们必须手动循环k和k大小的所有子集。以下代码块完成了这项工作。...因此,在构建Z时,PLS寻找具有高方差的方向(因为这些可以解释目标中的方差)以及与目标的高相关性。与主成分分析形成对比,主成分分析仅关注高差异。...可以证明,尽管PLS根据需要缩小了Z中的低方差分量,但它有时会使高方差分量膨胀,这可能导致在某些情况下更高的预测误差。这似乎是我们的前列腺数据的情况:PLS在所有讨论的方法中表现最差。...最后两个,PCR和PLS,表现更差,可能是由于数据中没有那么多特征,因此降维的收益是有限的。 谢谢阅读!我希望你学到了新东西!

    1.6K32
    领券