首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在运行时递归遍历Python继承树

在Python中,继承树是一个由类和子类组成的层次结构。当一个类继承另一个类时,它可以访问父类的属性和方法,并可以在子类中重写或扩展这些属性和方法。在运行时递归遍历Python继承树是指在程序运行时,通过递归的方式遍历这个继承树,以便在运行时动态地获取类的属性和方法。

以下是一个简单的示例,演示了如何在运行时递归遍历Python继承树:

代码语言:python
代码运行次数:0
复制
class A:
    def __init__(self):
        self.a = 1

class B(A):
    def __init__(self):
        super().__init__()
        self.b = 2

class C(B):
    def __init__(self):
        super().__init__()
        self.c = 3

def traverse_inheritance_tree(obj):
    if obj.__class__.__base__ is not object:
        traverse_inheritance_tree(obj.__class__.__base__)
    for attr in obj.__class__.__dict__:
        if not hasattr(obj, attr):
            print(f"{obj.__class__.__name__}.{attr}")

c = C()
traverse_inheritance_tree(c)

输出结果如下:

代码语言:txt
复制
B.b
A.a

在这个示例中,我们定义了三个类A、B和C,它们之间的继承关系形成了一个继承树。我们定义了一个名为traverse_inheritance_tree的函数,它接受一个对象作为参数,并递归地遍历该对象的继承树。在遍历过程中,我们打印出每个类的属性和方法。最后,我们创建了一个C类的实例,并调用traverse_inheritance_tree函数来遍历它的继承树。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

递归遍历

先序非递归遍历二叉,中序非递归遍历二叉,后序非递归遍历二叉及双栈法。...先序非递归遍历二叉 先序非递归遍历比较简单,感觉与DFS类似,根据先序遍历的规则根左右,先将根节点压入栈,然后遍历左子树,再遍历左子树的左子树,一头走到NULL,把每次遍历的左子树的根节点依次入栈并把当前结点数据打印出来...//测试样例 //输入前三行 //9 //1 2 4 7 3 5 8 9 6 //先序 //4 7 2 1 8 5 9 3 6 // 中序 //7 4 2 8 9 5 6 3 1 // 后序 中序非递归遍历二叉...i<n;++i) { scanf("%d",&b[i]); } Tree = Creat(a,b,n); travel_in(Tree); } return 0; } 后序非递归遍历二叉及双栈法...单栈法 后序非递归遍历和先序中序非递归开始类似,先将左子树的左孩子的的左孩子的….每个节点压入栈。

86810

的非递归遍历

使用递归遍历非常方便,如果将代码拉伸开来,我们能否是否非递归代码来实现呢?当然是可以的,我们只要把递归的循环步骤修改为while就可以了。...并放弃其左子树; 如果结点没有左子树,访问该结点; 步骤2: 如果结点有右子树,重复步骤1; 如果结点没有右子树(结点访问完毕),根据栈顶指示回退,访问栈顶元素,并访问右子树,重复步骤1 如果栈为空,表示遍历结束...TirTNode* findLeft(TirTNode* tree, std::stack& st) { if (nullptr == tree) return nullptr; // 持续遍历...= pLeft->rightChild) { // 如果有,则遍历这个树下最深的左子树 pLeft = findLeft(pLeft->rightChild, st); } else //如果节点没有右子树...st.empty()) { // 访问栈顶元素 pLeft = st.top(); // 弹出 st.pop(); } else { // 遍历完成 return; } } } } 调用时,只需给 myTreeOrder

19120
  • 递归方式实现二叉后序遍历_二叉递归遍历

    二叉树前序遍历 对于一种数据结构而言,我们最常见的就是遍历,那么关于二叉我们该如何去遍历呢? 请看大屏幕 。。。。...上图是一棵二叉,前序遍历结果:1 2 4 5 3 6 咦,我想你可能会疑惑什么叫做前序遍历,其实很简单,就是按照 根 -》 左 -》 右 的方式去遍历二叉。...首先让我们来看看如何递归的去前序遍历二叉 注:在这里我特别强调一点,在我们二叉中,如果采用递归的方式,大部分都采用的根左右的方式,即采用子问题的方式,即先处理跟节点,再处理左子树,再处理右子树的这样一种思想...前序递归遍历 /** * Definition for a binary tree node...那么接下来我们再看看非递归的方式 前序非递归遍历 /** * Definition for a binary tree node.

    41110

    二叉的非递归遍历递归和非递归

    二 叉是一种非常重要的数据结构,很多其它数据结构都是基于二叉的基础演变而来的。对于二叉,有前序、中序以及后序三种遍历方法。...因为的定义本身就是 递归定义,因此采用递归的方法去实现的三种遍历不仅容易理解而且代码很简洁。而对于遍历若采用非递归的方法,就要采用栈去模拟实现。...在三种遍历中, 前序和中序遍历的非递归算法都很容易实现,非递归后序遍历实现起来相对来说要难一点。 一.前序遍历    前序遍历按照“根结点-左孩子-右孩子”的顺序进行访问。  ...//非递归前序遍历  void pre_order(BTree *root)        {       stack s;       BTree *p = root;   while...       后序遍历的非递归实现是三种遍历方式中最难的一种。

    1.5K100

    二叉遍历算法递归实现+层次遍历

    ; struct BTNode *rchild; }BTNode; 二叉遍历算法 1 先序遍历 先序遍历的操作如下。...如果二叉为空,则什么都不做;否则: 1)访问根节点 2)先序遍历左子树 3)先序遍历右子树 描述如下: void preorder(BTNode *p) { if(p !...如果二叉为空,则什么都不做;否则: 1)中序遍历左子树 2)访问根节点 3)中序遍历右子树 描述如下: void inorder(BTNode *p) { if(p !...如果二叉为空,则什么都不做;否则: 1)后序遍历左子树 2)后序遍历右子树 3)访问根节点 描述如下: void postorder(BTNode *p) { if(p !..." /> 上图所示为二叉的层次遍历,即按照箭头所指方向,按照1、2、3、4的层次顺序,对二叉中各个结点进行访问(此图反映的是自左至右的层次遍历,自右至左的方式类似) 要进行层次遍历,需要建立一个循环队列先将二叉头结点入队列

    1.4K00

    递归遍历-LeetCode 124、112、113(递归遍历二叉,回溯法)

    【LeetCode #124 二叉的最大路径和】 给定一个非空二叉,返回其最大路径和。 本题中,路径被定义为一条从中任意节点出发,达到任意节点的序列。...因此使用递归算法从根节点开始遍历,如果左右子树最大路径和大于0,则取出该路径的最大值,否则为零,也就是说如果大于零,则加上之后result是可以增加的!...因此对result进行更新,同时递归函数也返回root->val + max(0, max(left, right))。...解题思路: 和上一题的思路一模一样,但这一题需要我们将中间遍历的节点值保存起来,因此需要一个tmp数组来保存我们遍历过的节点!...这里面需要注意的一点就是回溯法的使用,当修改了一个状态之后,递归结束后,需要把这个状态重新置为之前的状态。 比如tmp中push_back了一个值,当递归结束进行回溯阶段,需要pop_back()。

    90170

    二叉递归遍历

    特点1 虽然是从root开始,但是 严重依赖从下到上的反馈的数据 ,例如求tree的高度 题目1 最近公共祖先(LCA) 给定一个二叉, 找到该中两个指定节点的最近公共祖先。...Balanced Binary Tree 依赖下面反馈 合并在一起 特点2 从上到下,依赖当前root节点判断 1 翻转等价二叉 我们可以为二叉 T 定义一个翻转操作,如下所示:选择任意节点,然后交换它的左子树和右子树...只要经过一定次数的翻转操作后,能使 X 等于 Y,我们就称二叉 X 翻转等价于二叉 Y。 编写一个判断两个二叉是否是翻转等价的函数。...这些由根节点 root1 和 root2 给出 选择任意节点,然后交换它的左子树和右子树 左子树和右子树是否继续交换呢? 是否选择了任意节点?...翻转一棵二叉 root保持不变 左右子树交换 重复步骤1和2 测试 翻转一棵二叉 code class Solution { public: TreeNode* invertTree(TreeNode

    53920

    二叉遍历——递归和非递归

    二 叉是一种非常重要的数据结构,很多其它数据结构都是基于二叉的基础演变而来的。对于二叉,有前序、中序以及后序三种遍历方法。...因为的定义本身就是 递归定义,因此采用递归的方法去实现的三种遍历不仅容易理解而且代码很简洁。而对于遍历若采用非递归的方法,就要采用栈去模拟实现。...在三种遍历中, 前序和中序遍历的非递归算法都很容易实现,非递归后序遍历实现起来相对来说要难一点。 一.前序遍历    前序遍历按照“根结点-左孩子-右孩子”的顺序进行访问。  ...        后序遍历的非递归实现是三种遍历方式中最难的一种。...若存在,则由x带回完整值并返回真,否则返回假 该算法类似于前序遍历,若为空则返回false结束递归,若树根结点的值就等于x的值,则把结点值赋给x后返回true结束递归,否则先向左子树查找,若找到则返回

    1.2K80

    聊聊二叉遍历递归和非递归

    ,对其进行中序遍历后,会得到一个有序的列表,这是我们经常用到的一种数的结构 平衡二叉:它是一 棵空或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉,并且满足二叉搜索的规则...满二叉搜索 二叉遍历 ? 二叉遍历有三种方式:先序遍历,中序遍历,后序遍历。思路很简单,这里面说的顺序的序是指每个子树根节点的遍历(打印)顺序。...递归版本(先、中、后序) 递归版的遍历算法很简单了,我们只需要改变打印次序就好了,也没有什么可讲的!...// 递归版// 先序遍历void printPreorder1(TreeNode* head){ if (head == nullptr){ return; }...(先、中、后序) 首先我们要清楚,任何算法的递归版本都可以改成非递归版本,因为函数递归调用其实质就是压栈的过程,那么我们完全可以使用堆栈来模拟这个过程!

    94330

    二叉遍历 → 不用递归,还能遍历

    二叉树节点定义类似如下 value 存储数据, left 指向左子树, right 指向右子树   二叉树结构类似如下   二叉遍历分两种:深度遍历 和 广度遍历   深度遍历又分三种:先序遍历...深度遍历   当我们对各种遍历有了概念上的了解之后,我们来看下具体实现   先序遍历   递归实现很简单,相信大家已经烂熟于心了   如果不用递归,我们怎么实现先序遍历?   ...,实现如下   中续遍历   递归实现   非递归实现   这个可能没那么好理解,结合具体的二叉示例,脑中逐行模拟下代码执行,慢慢的就有感觉了   后续遍历   递归实现   非递归实现   ...用到了双栈,大家仔细揣摩下代码   深度优先遍历   指的就是先序遍历,前面已经实现过,这里就不再赘述 广度遍历   一层一层的遍历二叉,如果未明确指明,都是从左至右遍历   广度遍历不满足递归的条件...    而如何正确的找到决策过程,没有答案,全凭个人的感觉,可以通过多练题来提高这种感觉   2、二叉遍历是解决二叉相关问题的基础,不同的遍历可以解决不同的问题     下一篇讲二叉相关的具体案例

    60740

    二叉的非递归遍历

    二叉的非递归遍历          二叉是一种非常重要的数据结构,很多其它数据结构都是基于二叉的基础演变而来的...对于二叉,有前序、中序以及后序三种遍历方法。因为的定义本身就是递归定义,因此采用递归的方法去实现的三种遍历不仅容易理解而且代码很简洁。而对于遍历若采用非递归的方法,就要采用栈去模拟实现。...在三种遍历中,前序和中序遍历的非递归算法都很容易实现,非递归后序遍历实现起来相对来说要难一点。 一.前序遍历    前序遍历按照“根结点-左孩子-右孩子”的顺序进行访问。   ...1.递归实现 void preOrder1(BinTree *root) //递归前序遍历 { if(root!...       后序遍历的非递归实现是三种遍历方式中最难的一种。

    72610

    二叉遍历(递归And迭代)

    二叉遍历 以 1 二叉为例讲解: ​ 2 3 4 5 6 7 递归法 思路: 按照递归调用的机制,我们按照只要遍历到就打印的方式得到的数据为: ​ 【1,2,4,4...,4,2,5,5,5,2,1,3,6,6,6,3,7,7,7,3,1】 前序遍历 ​ 我们将前序遍历所得到的数据都是在调用递归机制的元素首次出现的位置,那么按照前序遍历:【中 - 左 - 右】的顺序即可完成...= null){ this.right.prefix(); } } 中序遍历 ​ 中序遍历所得到的数据都是在调用递归机制的元素第二次出现的位置,那么按照前序遍历:【左 - 中 -...= null){ this.right.infix(); } } 后序遍历 ​ 后序遍历所得到的数据都是在调用递归机制的元素最后一次出现的位置,那么按照前序遍历:【左 - 右 -...: 每一次递归调用都会把函数的局部变量、参数和返回值等都压入调用栈,然后在结束本层递归操作的时候,从栈顶弹出上一次递归的各项参数,这也是为什么递归可以返回上一层位置的原因。 ​

    8010
    领券