aHash、pHash、dHash是常用的图像相似度识别算法,原理简单,实现方便,个人把这三个算法作为学习图片相似度识别的入门算法。本次起,从aHash开始,对三个算法的基本原理和实践代码进行梳理。...1 aHash算法 Hash算法进行图片相似度识别的本质,就是将图片进行Hash转化,生成一组二进制数字,然后通过比较不同图片的Hash值距离找出相似图片。...图片配对,计算汉明距离。距离越近,越相似。当图片缩小为8*8时,通常认为汉明距离小于10的一组图片为相似图片。...2 Python实现 本例中将计算以下两张图片的相似度: (image1) (image2) 图像处理库 图像处理可以用opencv包或者PIL包。...1.0 / 64 print('dist is '+'%d' % dist) print('similarity is ' +'%d' % similarity) 最终结果: 可见两张图片相似度非常低
之前已经介绍了aHash算法的基本原理及python实现代码(图片相似度识别:aHash算法),本次来继续介绍图片相似度识别的另一常用哈希算法——dHash。...将图片缩小为9*8大小,此时照片有72个像素点。 灰度化处理。 计算差异值,获得最后哈希值(与aHash主要区别处)。...图片配对,计算汉明距离。 2 Python实现 本例中依然计算以下两张图片的相似度: ? ?...hash2 = dHash(image2) dist = Hamming_distance(hash1, hash2) end = time.time() #将距离转化为相似度...可见两张图片相似度非常低。 3 优缺点 优点:速度快,判断效果比aHash好
前面已经整理了aHash和dHash的算法原理和python代码(戳:图片相似度识别:aHash算法,图片相似度识别:dHash算法),今天来介绍hash三兄弟的最后一个——pHash。...1 pHash算法 pHash中文叫感知哈希算法,通过离散余弦变换(DCT)降低图片频率,相比aHash有更好鲁棒性。 基本原理: 缩小尺寸。将图片缩小为32*32大小。 灰度化处理。...(与aHash类似) 图片配对,计算汉明距离 2 DCT 一维DCT变换公式: ? f(i)为原始的信号,F(u)是DCT变换后的系数,N为原始信号的点数,c(u)是补偿系数。...DCT变换是对称的,因此可以对经过DCT变换的图片进行还原操作。 3 Python实现 本例中依然计算以下两张图片的相似度: ? (image1) ?...从上述例子也可以看出,用不同的方法最后的相似度数值不同,因此在实际应用中还需结合实际效果不断调整确定阈值。
印章检测流程:利用深度神经网络,提取印章深度特征,同时学习印章之间的相似度,自己与自己相似,自己与其它不相似。1....Siamese网络Siamese网络是一种常用的深度学习相似性度量方法,它包含两个共享权重的CNN网络(说白了这两个网络其实就是一个网络,在代码中就构建一个网络就行了),将两个输入映射到同一特征空间,然后计算它们的距离或相似度一一使用共享的卷积层和全连接层...,输出特征向量表示,然后计算相似度。...Triplet Loss网络TripletLoss网络是一种通过比较三个样本之间的相似度来训练网络的方法。...本文方法本文利用李生网络,把真章、假章同时输入进行学习,真与真相似度为1;真与假相似度为0,设计损失函数(结合BCELoss和Contrastive Loss) 进行模型训练。
1.背景 要识别两张图片是否相似,首先我们可能会区分这两张图是人物照,还是风景照等......对应的风景照是蓝天还是大海......做一系列的分类。...但是让计算机去区分这些图片分别是哪一类是很不容易的,不过计算机可以知道图像的像素值的,因此,在图像识别过程中,通过颜色特征来识别是相似图片是我们常用的(当然还有其特征还有纹理特征、形状特征和空间关系特征等...,这些有分为直方图,颜色集,颜色局,聚合向量,相关图等来计算颜色特征), 为了得到两张相似的图片,在这里通过以下几种简单的计算方式来计算图片的相似度: 直方图计算图片的相似度 通过哈希值,汉明距离计算...通过上面运行的结果可以看出来,img1和img2的相似度高一些。 三、余弦相似度(cosin) 把图片表示成一个向量,通过计算向量之间的余弦距离来表征两张图片的相似度。 1....四、图片SSIM(结构相似度量) SSIM是一种全参考的图像质量评价指标,分别从亮度、对比度、结构三个方面度量图像相似性。SSIM取值范围[0, 1],值越大,表示图像失真越小。
本工具能自动检测分析所提供的WORD及EXCEL文档中的所有图片相似度,能有效的提高报告自检效率。 ---- 数据需求 ---- 把要检测的文档放到”文档”目录下: ? ?...运行说明 ---- 双击“图片相似度分析工具”开始运行分析,运行界面如下: ?...运行完成后,文档中所提取出来的所有图片保存在“图片提取”目录下,分析出来的结果保存在”图片相似度+当前日期”EXCEL文档中: ?...输出结果筛选图片相似度高于85%的: 文档名 图片名1 图片名2 图片相似度 4G伪基站 image10.png image2.png 93.64% 4G伪基站 image10.png image7.png...97.83% RRC重建相关问题定位 image10.png image20.emf 95.97% RRC重建相关问题定位 image10.png image21.png 93.26% 文档提取的图片保存在文档类型
背景相似度检索的应用场景颇多,不管是互联网生态下的内容理解还是工业界质量检、人脸对比等,向量相似度检索技术的核心是通过向量表征的感兴趣区域并通过向量距离计算衡量输入样本的相似度。...针对图片的相似度检索,主要包含图片裁剪、特征提取、PCA、聚类计算、相似度距离计算6个步骤,通常业界有6类常具有代表性的向量表征算法,他们是Word2vec,Doc2vec,DeepWalk,Graph2Vec...本文基于公司的业务驱动,具体聊聊CV领域图片相似度检索技术的原理和实践案例。...Dinov2将开源数据集和网上大量的未经标注的数据集经过后处理后(PCA 哈希去重、NSFW 过滤和模糊可识别的人脸)形成数据池,并基于该数据池,提取图像Embedding特征,基于Embedding采用聚类算法将相似向量的图片放在统一簇中...features1_means, features2_means) print("sim:", sim)if __name__=='__main__': main()参考:CLIP与DINOv2的图像相似度对比
'id': 3, 'size': '45*96'} {'id': 0, 'size': '270*270'} {'id': 5, 'size': '340*320'} 时间复杂度:...pic_size_most_similar(source, dsts): """ 原理:无论目标图多大,把它等比缩放(扩大)到与原图等宽 然后算出此时的高,求与原图高的差距,即可算出相似性...返回大小最相似的图片 时间复杂度: n """ target = None mini_distance = 65535 for dst in dsts:
String hashValue){ return compare(new FingerPrint(hashValue)); } /** * 与指定的指纹比较相似度...(byte[] hashValue){ return compare(new FingerPrint(hashValue)); } /** * 与指定图像比较相似度...compare(BufferedImage image2){ return compare(new FingerPrint(image2)); } /** * 比较指纹相似度...,数组长度必须一致否则抛出异常 * @param f1 * @param f2 * @return 返回相似度(0.0~1.0) */ private static...System.out.println(fp1.toString(true)); System.out.printf("sim=%f",fp1.compare(fp2)); } } 结果越接近1,说明两张图片越相似
或者说高频可以提供图片详细的信息,而低频可以提供一个框架。 而一张大的,详细的图片有很高的频率,而小图片缺乏图像细节,所以都是低频的。...所以我们平时的下采样,也就是缩小图片的过程,实际上是损失高频信息的过程。均值哈希算法就是利用图片的低频信息。具体步骤:(1)缩小尺寸:将图片缩小到8x8的尺寸,总共64个像素。...这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。(2)简化色彩:将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。...(5)计算哈希值:将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了。...最后得到两张图片的指纹信息后,计算两组64位数据的汉明距离,即对比数据不同的位数,不同位数越少,表明图片的相似度越大。
实现功能 实现功能:利用Python实现WORD、EXCEL文档中图片相似度核查: 输出结果筛选图片相似度高于85%: 源代码
本类适用于比较2个字符的相似度,代码如下: using System; using System.Collections.Generic; using System.Text; public class...= _ArrChar2.Length + 1; _Matrix = new int[_Row, _Column]; } /// /// 计算相似度...); _Result.Difference = _Matrix[_Row - 1, _Column - 1]; } /// /// 计算相似度...", "对比字符二"); // 计算相似度, 不记录比较时间 decimal rate = stringcompute1.ComputeResult.Rate; // 相似度百分之几...// 计算相似度, 记录比较时间 string usetime = stringcompute2.ComputeResult.UseTime; // 对比使用时间
余弦相似度介绍 余弦相似度是利用两个向量之间的夹角的余弦值来衡量两个向量之间的相似度,这个值的范围在-1到1之间。...两个向量的夹角示例图如下: 余弦相似度的计算公式 向量的余弦相似度计算公式 余弦相似度计算的示例代码 用Python实现余弦相似度计算时,我们可以使用NumPy库来计算余弦相似度,示例代码如下: import...余弦相似度在相似度计算中被广泛应用在文本相似度、推荐系统、图像处理等领域。...如在文本相似度计算中,可以使用余弦相似度来比较两个文档的向量表示,从而判断它们的相似程度。 又如在推荐系统中,可以利用余弦相似度来计算用户对不同商品的喜好程度,进而进行商品推荐。...如果两篇文章的余弦相似度接近1,那么它们在内容上是相似的; 如果余弦相似度接近0,则它们在内容上是不相似的。 这样的相似度计算方法可以在信息检索、自然语言处理等领域得到广泛应用。
由于并未考虑到人眼的视觉特性(人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响等),因而经常出现评价结果与人的主观感觉不一致的情况...SSIM(structural similarity)结构相似性,也是一种全参考的图像质量评价指标,它分别从亮度、对比度、结构三方面度量图像相似性。 ?...在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用高斯加权计算每一窗口的均值、方差以及协方差,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量...一种基于局部方差和结构相似度的图像质量评价方法[J]. 光电子激光,2008。...<<endl; getchar(); return 0; } 效果 一幅图片自己对比: ? 结果: ?
图片本文将帮助你了解如何快速在 Elastic 中实施图像相似度搜索。你仅需要:要创建应用程序环境,然后导入 NLP 模型,最后针对您的图像集完成嵌入的生成工作。就这么简单!...整体了解 Elastic 图像相似度搜索 >> 图片如何创建环境第一步是为您的应用程序创建环境。...应用程序会将图像转换为矢量并在数据集中搜索相似的图像。如要搜索图像,请导航至第三个选项卡相似图像,从磁盘中上传图片,并点击搜索。...相较于图像搜索的其他传统方式,语义图像搜索具有下列优点:更高的准确度:无须依赖图像的文本元描述,矢量相似度便能捕获上下文和关联。...对于文本数据,将矢量相似度与传统关键字计分相结合能够让您同时收获这两种方法的优点。
对于人眼来说,很容易看出两个给定图像的质量有多相似。例如下图将各种空间噪声添加到图片中,我们很容易将它们与原始图像进行比较,并指出其中的扰动和不规则性。...在本文中,我们将看到如何使用一行代码实现以下相似性度量,并对比各相似度的评分: Mean Squared Error (MSE) Root Mean Squared Error (RMSE) Peak...rase(blur, org)) print("SAM: ", sam(blur, org)) print("VIF: ", vifp(blur, org)) 对于每一种噪声方法,我们可以看到下面的相似结果...在相似度评分中,我们可以看到,与其他噪声方法相比,Salt and Pepper和Poisson的值更接近于理想值。类似的观察结果也可以从其他噪声方法和指标中得到。...利用这些相似度指标来评估大量生成图像的再生质量,可以减少人工可视化评估模型的工作。 此外,相似度度量也可以判断和强调图像中是否存在的对抗性攻击。因此,这些分数可以用来量化这些攻击带来的干扰量。
iOS MachineLearning 系列(7)—— 图片相似度分析 图片相似度分析是Vision框架中提供的高级功能。...其本质是计算图片的特征值,通过特征值的比较来计算出图片特征差距,从而可以获取到图片的相似程度。在实际应用中,图片的相似度分析有着广泛的应用。如人脸对比识别,相似物品的搜索和识别等。...进行图片相似度计算前,首先需要对图片的特征值进行分析。使用VNGenerateImageFeaturePrintRequest类创建图片特征分析请求。...对于完全一样的图片,计算的差距为0,差距越大,表明图片的相似度越小。...result2 = self.result2, let result3 = self.result3, let result4 = self.result4 { // 进行相似性对比
这个识别图片的原理是分析像素点,计算平均颜色,大于平均颜色则为1,小于则为0,然后进行比对 精确度很低,只能匹配形状和比例一样的图片 class img { //比较图片相似度 public function...this->thanimg($data1,$data2); $rate=$than/(64*$rate*$rate); return $rate; } //计算图片数据... } $result = $this->imgdeflate($image); return $result; } /** * 打开一张图片... $n_h = 8 * $rate;//新图片高度 $new = imagecreatetruecolor($n_w, $n_h);//新建一张设定真彩色宽高的图 //取出一个...copy部分图像并调整 imagecopyresized($new, $image, 0, 0, 0, 0, $n_w, $n_h, $width, $height); //图像输出新图片
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/168948.html原文链接:https://javaforall.cn
前言 和网上各种首先你要有一个女朋友的系列一样,想进行人脸判断,首先要有脸, 只要能靠确定人脸的位置,那么进行两张人脸是否相似的操作便迎刃而解了。 所以本篇文章着重讲述如何利用openCV定位人脸。...上一篇文章的地址: 利用python进行识别相似图片(一) 安装openCV opencv官网 在进行下一步操作时,我们需要安装openCV,本来安装openCV的步骤跟平常安装其他模块一样,而然 由于...cv2.imread(path)不能读取中文路径,若路径中含有中文字符,其会返回None 在后面的操作中,包括是切割图片(人脸部分),再进行局部哈希,比较相似度, 等等都是用Image对象进行操作,如果再用...同样,你也可以使用Image的crop方法把人脸部分提取出来,然后进行局部哈希, 通过上一篇文章提及的算法,比较两者的相似度。...写一只具有识别能力的图片爬虫 在上一篇文章中,我说了会应用这些算法做成以只具有识别能力的图片爬虫,然现在我也确实是在做 但考虑到作为核心的图片识别和人脸识别的部分我已经写成文章分享出来,其余部分就是想写其他爬虫一样而已
领取专属 10元无门槛券
手把手带您无忧上云