图片人脸真伪鉴别的搭建涉及多个技术领域,主要包括深度学习、计算机视觉和模式识别。以下是搭建这一系统的详细步骤和相关概念:
import cv2
import numpy as np
def preprocess_image(image_path):
img = cv2.imread(image_path)
img = cv2.resize(img, (160, 160)) # 统一尺寸
img = img / 255.0 # 归一化
return np.expand_dims(img, axis=0)
from tensorflow.keras.applications import VGG16
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(160, 160, 3))
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(1, activation='sigmoid')(x)
model = Model(inputs=base_model.input, outputs=predictions)
for layer in base_model.layers:
layer.trainable = False
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.2, random_state=42)
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))
from flask import Flask, request, jsonify
app = Flask(__name__)
@app.route('/predict', methods=['POST'])
def predict():
file = request.files['file']
img = preprocess_image(file)
prediction = model.predict(img)
return jsonify({'result': 'real' if prediction[0][0] > 0.5 else 'fake'})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
通过以上步骤和方法,你可以搭建一个有效的图片人脸真伪鉴别系统。
领取专属 10元无门槛券
手把手带您无忧上云