近日社交网络上爆红的一款换脸应用,让许多普通用户体验到了跟爱豆同框、与偶像飙戏的快乐,也因数据使用带来的问题陷入了舆论的漩涡——除了用户隐私保障,如何辨别和处理换脸应用所制造的合成照片、合成视频是新型科技产品带来的新挑战。
虽然研究者们为检测换脸图片提出了多种AI鉴别算法,但随着换脸算法的不断改造升级,鉴别算法很难跟上换脸算法的变化。
前言 生成式对抗网络(GAN),是14年GoodfellowIan在论文Generative Adversarial Nets中提出来的。Yann LeCun曾评价GAN是“20年来机器学习领域最酷的想法。本文以在图像领域表现效果较好的GAN衍生模型DCGAN为基础,带大家全面了解一下GAN的算法。 一、GAN算法原理 在介绍GAN算法之前需要先了解两个基本基本名称,生成模型和判别模型。 生成模型:就是基于根据给定观测数据,找出观测数据内部的统计规律,并且能够依据基于所得的概率分布模型,产生全新的,与观测数
近期,中国模式识别与计算机视觉大会在厦门举办,是国内顶级的模式识别和计算机视觉领域学术盛会。大会汇聚了国内国外模式识别和计算机视觉理论与应用研究的广大科研工作者及工业界同行,分享我国模式识别与计算机视觉领域的最新理论和技术成果。通过此次会议,进一步加强本领域的同行与东南沿海地区的学者和企业进行学术交流和技术碰撞,从而促进模式识别与计算机视觉领域的协同合作与融合创新。
图像修复技术是一种用可选内容填充目标区域的技术,它的主要用途是在对象删除任务中,从照片中删除一个对象,并用希望能保持图像上下文完整性的内容自动替换被删除的部分。
导读:近日,浙江理工大学特聘副教授郭兵起诉杭州野生动物世界年卡系统采集人脸,已被杭州市富阳区人民法院正式受理。此案被称为“国内人脸识别第一案”。一直被忽视的互联网隐私终于被慢慢地重视起来。
一是杭州野生动物世界“为了方便消费者快速入园”,在今年 10 月将年卡系统从“指纹入园”升级为“人脸识别入园”,被消费者起诉。起诉者是浙江理工大学特聘副教授郭兵,他在五个月前办理了年卡,郭兵认为,“园区升级后的年卡系统进行人脸识别将收集他的面部特征等个人生物识别信息,该类信息属于个人敏感信息,一旦泄露、非法提供或者滥用,将极易危害包括原告在内的消费者人身和财产安全。”
近年来,图像合成技术日趋进步,GAN在给我们带来艺术体验的同时也埋下了很多隐患。Deepfake(AI换脸)技术让很多事情的真实性变得扑朔迷离,甚至会产生极大的政治影响。比如加蓬共和国总统的一段录像被反对派声称是假的,这成为了政变失败的因素之一。
从古至今,“欺骗”和“造假”这两个词可谓是贯穿了人类的历史。到了现代社会,面对着互联网上那些似是而非的庞杂信息,“有图有真相”开始成为网友们的诉求。
1997年,埃及哈特谢普苏特神庙前,一张恐怖组织持枪扫射游客后的新闻图片被爆造假; 2006年,以色列空袭黎巴嫩首都贝鲁特,一张浓烟笼罩城市的照片被证实是伪造的; 2008年,一张伊朗试射多枚远程导弹的新闻照片被怀疑是人工PS产物; 2019年,诺奖得主格雷格•塞门扎的29篇论文被质疑多张图片有篡改痕迹; 2020年,海外社交媒体上的一张《被火烧焦的澳大利亚》图片被指存在伪造嫌疑; …… 近年来频发的图片造假事件,使数字影像的真实性和完整性不断受到挑战,所谓的“眼见为实”变得越来越不可信,严重影响了
自从DeepFake诞生以来,从照片到视频,造假能力可谓是出神入化,人们惊呼:“再也不敢相信自己的眼睛了。”由此所带来的道德伦理与法律的影响也可见一斑。
机器之心专栏 人民中科、中科院自动化所国家模式识别实验室 来自人民中科与中科院自动化所国家模式识别实验室的研究团队,提出了一种基于身份空间约束的伪造人脸检测新方法,该方法具有较好的泛化性与兼容性。 随着深度学习等技术的发展,机器自动生成内容的水平不断提高;其中深度伪造(Deepfakes)更是内容生产中的热门技术,在短视频、直播、视频会议、游戏、广告、军事等领域已得到了广泛应用。但具备高度欺骗性的深度伪造技术也引发了诸多争议,它进一步混淆了数字世界与真实世界边界,带来了相应的风险和挑战。 深度伪造技术的兴起
在人脸识别技术正在被广泛运用的今天,人脸攻击技术不断进化,攻击类型也在逐步增加,给人脸安全技术带来了诸多挑战,我们应该如何应对?
随着大数据、人工智能等数字化技术的不断成熟,产业智能化升级已成为必然趋势。企业正渴望更丰富、精细的AI应用场景,为产业发展带来新动能。基于这样的背景,腾讯云正逐步打造相互协同、共同演进的AI大数据产品矩阵,推进大数据与AI在真实场景下的有效落地。
这篇文章中,作者通过将生成对抗网络(GANs,以下均简称GANs)运用到图片生成任务中向我们解释了其的原理。GANs是无监督学习中少有的成功的技术,一经提出,将生成任务推动到了新的高度上。在多样的图片生成任务中,GANs独领风骚。Yann LeCun(深度学习的先驱)将GANs称作“近十年以来机器学习中最优秀的想法”。最重要的是,在显著的性能的同时,GANs的核心思想又是那么地浅显易懂。本文在图片生成的任务重向读者们揭开了GANs的神秘面纱,以下是本文的主要内容:
报文鉴别 : 接收方 可以 验证其接收到的 报文的真伪 ; 包括 发送者身份 , 内容 , 发送时间 , 报文序列等 ;
第六届中国模式识别与计算机视觉大会(The 6th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2023)已于昨日在厦门成功举办。通过参加本次会议,使我有机会接触到许多来自国内外的模式识别和计算机视觉领域的研究者和工业界同行,了解了目前我国模式识别与计算机视觉领域的最新理论和技术成果。其中对我触动最大的就属上海合合信息的郭丰俊博士讲解的“文档图像前沿技术探索—多模态及图像安全”专题部分了。
本文是学习github5.com 网站的报告而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们
随着新冠疫情的确诊人数不断增加,口罩也出现了全线脱销的现象。很多电商卖家上架了3M口罩,微商也纷纷展示了自己的货源。这些口罩不仅价格翻倍,而且还有很多假货、二手货。不仅欺骗了消费者,还有可能危害大众的身体健康。为此,我们团队希望借助这次云开发公益黑客马拉松这个平台,借助小程序、人工智能等技术,帮助普通消费者识别假冒伪劣的口罩,为抗击疫情做出我们的贡献。为了实现这个愿景,我们开发了一款名为“罩妖镜”的小程序,希望这款小程序能为大众的身体健康和生命安全保驾护航。
在上一节中可以看到基于”推土距离“的WGAN网络能够有效生成马图片,但是网络构造能力有所不足,因此导致有些图片模糊,甚至有些图片连马的轮廓都没有构建出来,本节我们改进WGAN网络,让它具有更强大的图像生成能力。
最近,韩国人工智能公司Pulse 9推出了一个完全由AI打造的韩国流行音乐女团,Eternity。Pulse 9通过该公司研发的“Deep Real”技术打造了11位AI女团成员,并发布了单曲MV“I’m Real”。该单曲在YouTube上的播放量达到67万。
据美国《国会山报》报道,一名竞选密苏里州圣路易斯地区众议院席位的共和党候选人日前公布一份长达23页的文件,声称弗洛伊德死亡录像是为了加剧种族紧张局势而合成的Deepfake假视频!
许多人当听到“人工智能”、“机器学习”或者“bot”的时候,首先浮现在脑海当中的应当是科幻片中经常出现、未来感十足的既会走路又会说话的机器人。
【论文题目】Implicit Neural Representation for Cooperative Low-light Image Enhancement 【出处】ICCV 2023 【原文链接】https://arxiv.org/pdf/2303.11722.pdf 【代码链接】(已开源) https://github.com/Ysz2022/NeRCo
今天我们讲GAN,GAN是什么?GAN就是Generative Adversarial Networks,也就是生成对抗网络。这是近两年特别火的一个学术方向,发出了大量优秀的论文,简直是百花齐放。效果都挺好,但是其原理却又很简单,所以我们今天就不用一个公式,来介绍一下GAN。内容大致分为:
随着小视频越来越流行,兼具趣味与人物个性的人脸特效成为小视频软件的标配,美颜自不必说,现在的人脸特效可谓“千变万化”,人脸年轻化、变欧美范儿、发型改变、各种表情、胖瘦等。
如何让 GAN 生成带有指定特征的图像?这是一个极有潜力、极有应用前景的问题,然而目前都没有理想的方法。韩国大学电子工程学院 Minhyeok Lee 和 Junhee Seok 近期发表论文,就生成对抗网络的控制问题给出了自己的办法,雷锋网 (公众号:雷锋网) AI 科技评论根据原文进行如下编辑,原文链接:https://arxiv.org/abs/1708.00598 简介 生成对抗网络(GANs)是最近几年提出的新方法,在其问世之后的短短时间内,生成对抗网络已经在生成真实的样本上表现出很多有前途的
AI 科技评论按:如何让GAN生成带有指定特征的图像?这是一个极有潜力、极有应用前景的问题,然而目前都没有理想的方法。韩国大学电子工程学院Minhyeok Lee和Junhee Seok近期发表论文,就生成对抗网络的控制问题给出了自己的办法,AI 科技评论根据原文进行如下编辑。 简介 生成对抗网络(GANs)是最近几年提出的新方法,在其问世之后的短短时间内,生成对抗网络已经在生成真实的样本上表现出很多有前途的结果了。然而, 在生成对抗网络的使用上,目前还有未能解决的问题:由于发生器(Generator)
循环生成对抗网络(简称CycleGans)[1]是功能强大的计算机算法,具有改善数字生态系统的潜力。它们能够将信息从一种表示形式转换为另一种表示形式。例如,当给定图像时,他们可以对其进行模糊处理,着色(如果其最初是黑白的),提高其清晰度或填补缺失的空白。
连英伟达本月刚上线的StyleGAN2也被攻破了。即使是人眼都分辨看不出来假脸图片,还是可以被AI正确鉴别。
机器之心原创 作者:Liao 参与:Joni、Nurhachu、黄小天 近日,加利福尼亚大学和 Adobe Research 在 arXiv 上联合发表了一篇名为《生成人脸修复(Generative
选自Wired 作者:Cade Metz 机器之心编译 参与:黄小天、蒋思源 著名物理学家、加州理工学院教授以及畅销书作者理查德·费曼( Richard Feynman)离开人世的那一天,其教室的黑板上写着:「我不能创造的,我也不理解(What I cannot create, I do not understand)。」 当 Ian Goodfellow 解释其在谷歌大脑正进行的研究时,他引用了费曼的这一格言,但他指代的不是自己或者谷歌的任何员工,而是机器:「人工智能不能创造的,其也不理解(What an
对称密钥中,加解密双方难以使用相同密钥,难以事先确定使用一样的密钥。如果网上传输密钥,也会被人截取(截取后,该信息不会发给接收方,只能由接收方发)知道的,恶意者截取信息,获得密钥,进行伪造,在用密钥加密,发给接收方,接收方虽能解密,但无法保证信息的正确信,是不是发送方发来的。
夏乙 安妮 编译整理 量子位 出品 | 公众号 QbitAI 输入一张语义地图—— 就能为你还原整个世界。 输入一张亲妈都认不出来的语义标注图—— 为你合成一张真实的人脸。 聪明的你可能已经发现,这个
为了有效控制假视频和图片的传播,全球最大的修图和音视频剪辑软件公司Adobe也透露表示其或将提出一定的反制措施。
最近,多项研究采用了生成对抗网络(Generative Adversarial Networks, 简称GANs)这一技术来生成分辨率为1024x1024的高清图片。超级逼真的人脸、动物和其他算法生成的图像令人惊叹不已,要知道,这项技术出现也不过短短几年。从分辨率低,像素差的图片到如今栩栩如生的高清画质,在很短的时间内就实现了质的飞跃:这一领域进步多大,请看下图。
场景描述:将「马赛克」像素级别的大头照转换成高清照片,是一种怎样的体验?杜克大学提出的 AI 算法,不仅可以「去掉马赛克」,还能精细到每一道皱纹、每一根头发。你要试试吗?
中国药科大学李萍/陆续团队近期在《Food Chemistry》期刊发表了题为“Comparative plastomes of eight subgenus Chamaesyce plants and system authentication of Euphorbiae Humifusae Herba”的研究论文,通过8种地锦草亚属植物的质体基因组比较分析对地锦草药材进行了系统鉴定。
本文介绍了一种从语义图像生成逼真图像的方法,该方法基于Pix2Pix,并进行了改进。首先,使用条件生成对抗网络(cGAN)生成逼真的图像,然后使用多尺度鉴别器来提高生成图像的质量。最后,引入了实例级条件,在生成图像时为每个像素赋予一组实例条件,以使生成的图像更加真实。
2018 Geekpwn CAAD(对抗样本挑战赛)继承了 NIPS CAAD 2017 比赛的形式,但同时也添加了一些新的挑战。2018 年 10 月,吴育昕和谢慈航受邀参加 Geekpwn CAAD CTF,这是一场展示不同类型对抗样本攻防的现场比赛。
【新智元导读】AI可以用来鉴黄,但有时会把含裸女的古典名画过滤掉。巴西的一组研究人员在JICNN上展示了一种新方法,使用生成对抗网络,给女性裸体照“穿上”比基尼泳装。不过,这种技术也可以被反过来,根据比基尼泳装照绘出裸照。
港中文、哈工大和腾讯优图的一篇最新研究,可以将人脸照片转化成如同手绘版的卡通图,甚至还能反向转换,将二次元的卡通图像,转换成现实中可能的样子。
近日在莫斯科举行的“人工智能世界之旅”上出现极为戏剧的一幕,俄储蓄银行数据研究部门的领导人尼古拉·格拉西门,向俄罗斯总统普京介绍识别虚假照片和视频的方法,并在现场对中美登月任务的照片进行对比分析。
如果说,2016年阿尔法狗的亮相让普通百姓真切地感受到了人工智能的力量,如今的人工智能则已经改变了人们的生产生活方式。 例如,在使用智能手机的“语音助理”功能时,在购物网站与在线客服聊天时,在搭乘高铁“刷脸”进站时……人们已在不经意间享受了人工智能的便捷服务。 刷脸进站 不仅如此,人工智能技术还正在被应用于文化和旅游服务中,开启大众全新文化和旅游体验新模式,让享文化、乐旅途更具科技范儿。 腾讯和云南省人民政府打造的“一部手机游云南”以及和重庆市武隆区人民政府联合打造的“一部手机游武隆”,涉及了物联
你有没有想过通过深度神经网络做学会如何烹饪?麻省理工学院的最新研究便使用深度神经实现如何烹饪美味的披萨!他们最近发布的名为“How to make a pizza: Learning a compositional layer-based GAN model “的文章(后台回复”制作披萨“获取原文下载链接),探索了如何训练GAN模型用来识别制作比萨饼所涉及的步骤。他们的PizzaGAN分为两部分:
来源 | Maximilian Schreiner 译者 | 核子可乐 策划 | 刘燕 AI前线
领取专属 10元无门槛券
手把手带您无忧上云