首页
学习
活动
专区
圈层
工具
发布

具有张量流的混合密度网络

在这篇文章中,我尝试使用TensorFlow来实现经典的混合密度网络(Bishop '94)模型。在之前的博客文章中,我已经实现了MDN 。...所以训练结束后,我们可以使用训练好的模型,然后再调用sess.run()来生成预测,并绘制预测的数据与训练数据集。 在我们完成了这个练习后,我们应该使用close()来释放资源。...我们需要的是一个能够预测每个输入的不同输出值范围的模型。在下一节中,我们实现一个混合密度网络(MDN)来完成这个任务。...get_lossfunc(out_pi, out_sigma, out_mu, y) train_op = tf.train.AdamOptimizer().minimize(lossfunc) 我们将在下面训练模型...接下来我们要做的是让模型为我们产生分布,例如沿着x轴的一堆点,然后对于每个分布,从该分布中随机抽取10个点,将所生成的集合数据映射到y轴上。这让我们能感知生成的pdf是否与训练数据相匹配。

2.4K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何用张量分解加速深层神经网络?(附代码)

    翻译 | 林立宏 整理 | 凡江 背景 在这篇文章中,我将介绍几种低秩张量分解方法,用于在现有的深度学习模型中进行分层并使其更紧凑。...在这篇文章(http://t.cn/RoaTgHT )中我介绍了一些称为裁剪(pruning)的技术以减少模型中的参数数量。...另外一个关于参数化模型的例子是使用更少的类别对网络进行微调以实现更简单的任务。 和裁剪(pruning)相似,分解之后通过模型需要微调来恢复准确性。...他们使用它来加速网络的速度,而不会明显降低精度。在我自己的实验中,我可以使用这个在基于 VGG16 的网络上获得 x2 加速,而不会降低准确度。...总结 在这篇文章中,我们讨论了几个张量分解的方法来加速深度神经网络。 截断的 SVD 可用于加速完全连接的层。

    5K40

    JavaIO流:模型

    常用到的读/写数据方式有:同步阻塞 IO、同步非阻塞 IO、IO 多路复用、信号驱动、异步 IO ~ 本篇内容包括:Java IO 与 IO 模型、五种 IO 模型、三种 Java IO 模型。...---- 文章目录 一、Java IO 与 IO 模型 1、IO 与 IO 模型的关系 2、IO 的流程 二、五种 IO 模型 1、同步阻塞 2、非阻塞 3、多路复用 IO 4、信号驱动 5、异步IO...三、三种 Java IO 模型 1、BIO 2、NIO 3、AIO 4、适用场景分析 ---- 一、Java IO 与 IO 模型 1、IO 与 IO 模型的关系 提到 IO,就要说 IO 模型,否则就像学...NIO 通信模型图: 3、AIO AIO 是真正意义上的异步非阻塞 IO 模型。...这两种方法均为异步的,对于读操作而言,当有流可读取时,操作系统会将可读的流传入 read 方法的缓冲区,并通知应用程序;对于写操作而言,当操作系统将 write 方法传递的流写入完毕时,操作系统主动通知应用程序

    51360

    深度学习模型加速:Pytorch模型转TensorRT模型

    经过一段时间的调研与实践,算是对模型加速这方面有了一定的了解,便促成了此文。 1、如何实现模型加速? 既然要提升效率,实现模型加速,那么具体应该怎么做呢?...目前常用的深度学习模型加速的方法是:将pytorch/tensorflow等表示的模型转化为TensorRT表示的模型。 pytorch和tensorflow我们了解,那么TensorRT是什么呢?...TensorRT是NVIDIA公司出的能加速模型推理的框架,其实就是让你训练的模型在测试阶段的速度加快,比如你的模型测试一张图片的速度是50ms,那么用tensorRT加速的话,可能只需要10ms。...我将实现深度学习模型加速整体分成了两部分: 模型转换部分。实现 Pytorch/Tensorflow Model -> TensorRT Model 的转换。 模型推断(Inference)部分。...深度学习模型加速是一个繁杂的任务,需要注意的是,本文并没有对各个内容进行详细的讲解,更多的是提供一种整体的框架、流程,并给出相应的解决指南,这一点从文中嵌入的各个链接也可以看出。

    1.6K21

    张量模型并行详解 | 深度学习分布式训练专题

    随着模型规模的扩大,单卡显存容量无法满足大规模模型训练的需求。张量模型并行是解决该问题的一种有效手段。本文以Transformer结构为例,介绍张量模型并行的基本原理。...2、将计算图中的层内的参数切分到不同设备,即层内并行,我们称之为张量模型并行,如下右图[1]。本文主要讲述张量模型并行。...张量模型并行原理 张量模型并行需要解决两个问题:参数如何切分到不同设备(切分方式);以及切分后,如何保证数学一致性(数学等价))。...由于张量模型并行实际目的,是解决单设备无法运行大模型的问题,因此,张量模型并行虽然在多个设备上运行,其运行的结果需要完全等价单设备运行。为了等价单设备模型初始化,张量模型并行需要对随机性进行控制。...在张量模型并行和该算子结合使用时,需要特别注意对该算子随机性的控制。

    3K40

    TVM 加速模型,优化推断

    TVM 是一个开源深度学习编译器,可适用于各类 CPUs, GPUs 及其他专用加速器。它的目标是使得我们能够在任何硬件上优化和运行自己的模型。...不同于深度学习框架关注模型生产力,TVM 更关注模型在硬件上的性能和效率。 本文只简单介绍 TVM 的编译流程,及如何自动调优自己的模型。...其中流程见下图: 从高层次上看,包含了如下步骤: 导入(Import):前端组件将模型提取进 IRModule,其是模型内部表示(IR)的函数集合。...调优模型 TVM 文档 User Tutorial[2] 从怎么编译优化模型开始,逐步深入到 TE, TensorIR, Relay 等更底层的逻辑结构组件。...这里只讲下如何用 AutoTVM 自动调优模型,实际了解 TVM 编译、调优、运行模型的过程。

    92220

    Scikit-Learn 1.8.0 引入 Array API,支持 PyTorch 与 CuPy 张量的原生 GPU 加速

    这意味着 CuPy 数组或 PyTorch 张量现在可以直接在 Scikit-Learn 的部分组件中直接使用了,且计算过程能保留在 GPU 上。 1.8.0 到底更新了什么?...在 1.8.0 版本中可以实现: 直接传参:受支持的评估器(estimators)现在可以直接接收 CuPy 数组或 PyTorch 张量。...状态保留:模型拟合后的属性会与输入数据保持在同一物理设备上。 虽然目前的版本依然贴着“实验性”标签且需要显式开启,但它确实打破了 Scikit-Learn 过去那种“万物皆需 NumPy”的框架。...在旧版本中,即便你的基础模型(如 XGBoost)是在 GPU 上训练的,Scikit-Learn 的编排逻辑会把数组转回 NumPy,然后在 CPU 上重新计算各项指标。...但是你依然可以用 cuDF 做数据加载和预处理,不过输入模型之前必须确保输入是 array-like 格式。

    12410

    PyTorch | 加速模型训练的妙招

    引言 提升机器学习模型的训练速度是每位机器学习工程师的共同追求。训练速度的提升意味着实验周期的缩短,进而加速产品的迭代过程。同时,这也表示在进行单一模型训练时,所需的资源将会减少。.../logs'), ) as prof: train(args) 之后,您可以启动张量板并查看分析跟踪。...encoder_attention"): data = self.encoder_attention(**data, **encoder_data) 了解 PyTorch traces 收集traces后,在张量板中打开它们...内存分配器 使用 PyTorch 在 CUDA 设备上分配张量时,PyTorch 会利用缓存分配器来避免执行成本较高的 cudaMalloc 和 cudaFree 操作。...但是,如果你处理的是长度不一的数据,不同前向传播过程可能需要不同大小的中间张量。这时,PyTorch 的分配器可能没有合适的内存块可用。

    37910

    微调Whisper模型和加速推理

    另外项目最后还对语音识别加速推理,使用了CTranslate2加速推理,提示一下,加速推理支持直接使用Whisper原模型转换,并不一定需要微调。...微调完成之后会有两个模型,第一个是Whisper基础模型,第二个是Lora模型,需要把这两个模型合并之后才能之后的操作。...python infer.py --audio_path=dataset/test.wav --model_path=models/whisper-large-v2-finetune 加速预测 众所周知...,直接使用Whisper模型推理是比较慢的,所以这里提供了一个加速的方式,主要是使用了CTranslate2进行加速,首先要转换模型,把合并后的模型转换为CTranslate2模型。...--output_dir models/whisper-large-v2-ct2 --copy_files tokenizer.json --quantization float16 执行以下程序进行加速语音识别

    2.8K30
    领券