首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

光学算法中的密度连通集

(Density Connected Set)是指在图像处理和计算机视觉领域中,一种用于图像分割和目标检测的算法。密度连通集算法基于像素之间的密度关系,将具有相似密度的像素聚类在一起,从而实现图像中目标的分割和提取。

密度连通集算法的主要步骤包括:

  1. 密度计算:根据像素周围的邻域信息,计算每个像素的密度值。一般情况下,密度值可以通过计算像素周围邻域内像素的数量来确定。
  2. 密度阈值设置:根据应用需求,设置一个密度阈值,用于确定哪些像素可以被认为是密度连通的。
  3. 密度连通集合生成:根据密度阈值,将具有相似密度的像素聚类在一起,形成密度连通集合。

密度连通集算法的优势包括:

  1. 无需预先设定目标数量:密度连通集算法可以自动根据图像中像素的密度分布情况,确定目标的数量,无需事先设定。
  2. 对噪声和异常值具有鲁棒性:密度连通集算法可以有效地过滤掉图像中的噪声和异常值,提高目标检测的准确性。
  3. 适用于不规则形状的目标:密度连通集算法可以处理不规则形状的目标,对于一些传统的基于几何形状的算法来说更具优势。

密度连通集算法在图像处理和计算机视觉领域有广泛的应用场景,包括目标检测、图像分割、图像识别等。在腾讯云的产品中,可以使用腾讯云图像处理服务(https://cloud.tencent.com/product/imagerecognition)来实现密度连通集算法相关的功能。该服务提供了丰富的图像处理接口和算法,可以满足不同应用场景的需求。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Cell Reports:青年静息状态皮层hubs分为4类

    在儿童时期,支持高级认知过程的神经系统经历了快速生长和完善,这依赖于整个大脑激活的成功协调。一些协调是通过皮质中枢发生的,皮质中枢是与其他功能网络共同激活的大脑区域。成人皮层中枢有三种不同的特征,但在认知发生关键改善的发育过程中,人们对中枢的类别知之甚少。我们在大型青年样本(n = 567,年龄8.5-17.2)中确定了四个不同的中枢类别,每个类别都表现出比成年人更多样化的连接概况。整合控制-感觉处理的青少年中枢分为两个不同的类别(视觉控制和听觉/运动控制),而成人中枢则统一在一个类别下。这种分裂表明,在功能网络经历快速发展的同时,需要隔离感觉刺激。青少年控制处理中枢的功能协同激活强度与任务表现有关,这表明在将感觉信息传递到大脑控制系统和从大脑控制系统传递信息方面起着特殊作用。

    02

    Nature子刊:基于静息态EEG功能连接模式识别精神疾病亚型

    摘要:精神疾病在神经生物学和临床表征上存在异质性,基于数据驱动的疾病亚型识别有助于精神疾病的诊断和治疗,本文报告了创伤后应激障碍(PTSD)和重度抑郁障碍(MDD)两种临床相关亚型的识别,这两种疾病亚型主要通过在额顶叶控制网络(FPCN)和默认模式网络内(DMN)中稳定、有区分度的功能连接模式来建立。本文分析了四组PTSD和MDD患者数据集,在高密度静息态脑电图中重建信号,探究重建信号的能量包络连接性特征(PEC),通过有监督和无监督的机器学习确定疾病亚型,并表明这些疾病亚型在不同条件下记录的独立数据集之间是可转移的。与健康对照组相比,功能连接差异较大的疾病亚型对PTSD的心理治疗反应较差,对MDD的抗抑郁药物没有反应。在MDD数据集中,PTSD和MDD两种临床相关亚型对接受心理治疗同时接受重复经颅磁刺激(rTMS)治疗反应相似。本文通过稀疏聚类的数据驱动方法可能为基于连接组的诊断提供一个有效的解决方案。 一、背景介绍 精神病的诊断是根据一系列症状来定义的。例如,创伤后应激障碍(PTSD)涉及一系列情绪、认知和躯体症状,这些症状可能在一个人经历或目睹了一个对个人造成严重伤害或威胁的创伤事件后出现。同样,重度抑郁症(MDD)以持续的负面情绪为特征,通常与生理、心理或社会压力来源有关。研究精神疾病神经生物学的传统方法遵循了这一诊断框架,通过病例对照研究,将所有精神疾病患者与健康个体进行比较。然而,研究病例-对照组的差异可能会阻碍精神病学生物标志物的发现和对精神病理生物学的理解,在当前的临床诊断定义中,患者和健康对照患者中存在高度的生物学异质性,而这种生物异质性对治疗结果有重大影响,如何识别和复制能够阐明这种异质性的生物标志物是一个长期的挑战。本文试从高密度静息态脑电图(rsEEG)中重建源信号,并从重建的信号中提取功能包络连接特征(PEC),从PEC特征中寻找生物标志物。 研究主要目标:描述PTSD和MDD的神经生物学异质性,通过稀疏聚类的数据驱动方法,从静息态脑电图的功能包络连接(rsEEG-PEC)中识别出生物标志物,从而阐明精神病学在神经生物学和临床表征上的异质性。 研究方法概览 在四个独立的数据集中进行亚型分析,数据集包括两个PTSD数据集和两个MDD数据集。从一个PTSD数据集的rs-EEG中重建信号,从信号中提取PEC特征,根据PEC特征确定两种稳定且可复制的临床相关亚型。然后在其他数据集上对发现的亚型进行复制分析,探究数据集疾病亚型的可转移性,最后探究发现的疾病亚型在不同的临床干预下的反应,分析亚型的临床意义。 二、研究设计 数据集1:106名创伤后应激障碍患者和95名健康对照者(曾受创伤的健康参与者)的创伤后应激障碍数据集;研究人员使用BrainAmp直流放大器(Brain Products)以5 kHz采样率采集PTSD患者的脑电图数据,模拟带通滤波在0 - 1 kHz之间。按照标准的10-20系统,使用带有64个Ag/AgCl电极的Easy EEG帽进行数据记录。参考电极被固定在鼻尖上。在实验过程中,参与者被安排坐在一张舒适的椅子上,并被要求保持清醒,完成两个阶段(闭上眼睛三分钟和睁开眼睛三分钟),之后进行脑电信号的预处理。 数据集2:创伤后应激障碍135例患者,这些参与者是在北加州或新墨西哥州的退伍军人事务诊所的心理治疗评估中,基于符合创伤后应激障碍的临床标准而招募的。采用 (EGI)放大器,以1 kHz采样率和256个电极采集创伤后应激障碍患者的脑电图数据,在数据记录期间电极阻抗保持在50 KΩ以下。在实验中,参与者坐在一张舒适的椅子上,并被要求保持清醒,完成两个阶段(10分钟闭眼和10分钟睁开眼)。静息状态的脑电图预处理。记录的rsEEG数据使用与PTSD研究数据集1中相同的方式处理。 数据集3:重度抑郁症266例患者,在四个研究地点:德克萨斯大学西南医学中心(TX)、麻省总医院(MG)、哥伦比亚大学(CU)和密歇根大学(UM),根据机构审查委员会批准的方案,每个参与者都获得了书面知情同意。rsEEG记录了四个研究地点。在所有研究地点,都进行了放大器校准。实验人员通过视频会议演示了准确的脑电图帽放置和任务指令传递,试验受试者脑电图数据获得了哥伦比亚脑电图团队的认证。rsEEG被记录在4个2分钟的区块中(两个闭着眼睛的区块和两个睁开眼睛的区块)。参与者被要求保持静止,尽量减少眨眼或眼球运动,并在眼睛睁开的情况下注视中心呈现的十字。记录的rsEEG数据使用与PTSD研究数据集1中相同处理。结果,在266例治疗前脑电图记录的患者中,228例有可用的脑电图数据可供分析。38例无法使用脑电图记录的患者主要表现为不良脑电图通道过多、通道总功率过大。 数据集4:重度抑郁症179例患者,179名患者来自荷兰的三家门诊精神保健诊所。根据10-20电极国际系统,所有通道的采样率为500赫兹。受试者被要求睁开眼睛,闭上眼

    00

    识辨 | 什么是分类?什么是聚类?

    本文转自人机与认知实验室 【人工智能某种意义上是辨识区别精度的弥聚过程,因而自然少不了分类与聚类方法】 分类是指按照种类、等级或性质分别归类。 聚类是将物理或抽象对象的集合分成由类似的对象组成的多个类的过程。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。“物以类聚,人以群分”,在自然科学和社会科学中,存在着大量的分类问题。聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于分类学,但是聚类不等于分类。聚类与分类的不同在于,聚类

    05

    PI-CAI2022——多模态MRI前列腺癌分割挑战赛

    诊断前列腺癌很困难(即使是放射科医生)。前列腺癌 (PCa)是男性最常见的癌症之一。全世界每年有 100 万男性接受诊断,300,000 人死于 PCa (csPCa) 。多参数磁共振成像 (mpMRI) 在前列腺癌的早期诊断中发挥着越来越重要的作用,并且在活检之前被欧洲泌尿外科协会 (EAU) 推荐(Mottet et al., 2021 )。然而,目前阅读前列腺 mpMRI 的指南(即PI-RADS v2.1 ) 遵循半定量评估,要求大量专业知识才能正确使用。此外,前列腺癌在 MRI 中可以表现出广泛的临床行为和高度异质的形态。因此,评估容易受到读者间一致性低(<50%)、次优解释和过度诊断的影响(Rosenkrantz等人,2016年,Westphalen等人,2020年)。与 mpMRI协议不同,双参数 MRI (bpMRI)不包括动态对比增强成像——从而降低了成本,消除了使用对比剂带来的任何不利影响的风险,并缩短了检查时间(Turkbey等人,2019年)。因此,尽管提供的诊断信息比 mpMRI 少(deRooij等人,2020 年),但bpMRI更适合大批量、基于人群的筛查(Eklund 等人,2021 年。

    02

    NC:结构连接组学的遗传结构

    摘要:由髓轴突形成长程连接,使远端大脑区域之间能够快速通信,但遗传学如何控制这些连接的强度和组织仍不清楚。我们对206名参与者的扩散磁共振成像束得出的26333种结构连接进行了全基因组关联研究,每种测量都代表了一对皮质网络、皮质下结构、皮质半球内部之间的髓鞘连接密度。在Bonferroni校正后,我们确定了30个独立的全基因组显着变异,用于研究的测量数量涉及髓鞘形成(SEMA3A)、神经突伸长和引导(NUAK1、STRN、DPYSL2、EPHA3、SEMA3A、HGF、SHTN1)、神经细胞增殖和分化(GMNCs、CELF4、HGF)、神经元迁移(CCDC88C)、细胞骨架组织(CTTNBP2、MAPT、DAAM1、MYO16、PLEC)和脑金属转运(SLC39A8)。结构连通性测量是高度多基因的,估计有9.1%的常见变异对每个测量具有非零影响,并表现出负选择的特征。结构连通性测量与各种神经精神和认知特征具有显着的遗传相关性,表明连通性改变变异往往会影响大脑健康和认知功能。在成人少突胶质细胞和多种胎儿细胞类型中染色质增加的区域,遗传性富集,表明结构连接的遗传控制由对髓鞘形成和早期大脑发育的影响介导。我们的研究结果表明,通过不同的神经发育途径对白质结构连接进行普遍的、多效性的和空间结构的遗传控制,并支持这种遗传控制与健康大脑功能的相关性。

    01

    机器视觉表面缺陷检测综述

    中国是一个制造大国,每天都要生产大量的工业产品。用户和生产企业对产品质量的要求越来越高,除要求满足使用性能外,还要有良好的外观,即良好的表面质量。但是,在制造产品的过程中,表面缺陷的产生往往是不可避免的。不同产品的表面缺陷有着不同的定义和类型,一般而言表面缺陷是产品表面局部物理或化学性质不均匀的区域,如金属表面的划痕、斑点、孔洞,纸张表面的色差、压痕,玻璃等非金属表面的夹杂、破损、污点,等等。表面缺陷不仅影响产品的美观和舒适度,而且一般也会对其使用性能带来不良影响,所以生产企业对产品的表面缺陷检测非常重视,以便及时发现,从而有效控制产品质量,还可以根据检测结果分析生产工艺中存在的某些问题,从而杜绝或减少缺陷品的产生,同时防止潜在的贸易纠份,维护企业荣誉。

    02

    综述 | 机器视觉表面缺陷检测

    中国是一个制造大国,每天都要生产大量的工业产品。用户和生产企业对产品质量的要求越来越高,除要求满足使用性能外,还要有良好的外观,即良好的表面质量。但是,在制造产品的过程中,表面缺陷的产生往往是不可避免的。不同产品的表面缺陷有着不同的定义和类型,一般而言表面缺陷是产品表面局部物理或化学性质不均匀的区域,如金属表面的划痕、斑点、孔洞,纸张表面的色差、压痕,玻璃等非金属表面的夹杂、破损、污点,等等。表面缺陷不仅影响产品的美观和舒适度,而且一般也会对其使用性能带来不良影响,所以生产企业对产品的表面缺陷检测非常重视,以便及时发现,从而有效控制产品质量,还可以根据检测结果分析生产工艺中存在的某些问题,从而杜绝或减少缺陷品的产生,同时防止潜在的贸易纠份,维护企业荣誉。

    03

    脑网络的小世界属性

    自小世界网络的概念被首次使用高聚类系数和短路径长度的结合被定量定义以来,已经过去了将近20年;大约10年前,作为连接组学新领域快速发展的一部分,这种复杂网络拓扑度量开始广泛应用于神经影像和其他神经科学数据的分析。本文简要回顾了图论方法和小世界网络生成的基本概念,并详细考虑了最近使用高分辨率轨迹追踪方法绘制猕猴和小鼠解剖网络的研究的意义。在本文章中需要区分二进制或未加权图的拓扑分析和加权图的拓扑之间的重要方法区别,前者在过去为脑网络分析提供了一种流行但简单的方法,后者保留了更多的生物学相关信息,更适合于先进的图分析和其他成像研究中出现的越来越复杂的脑连接数据。最后,本文强调了加权小世界进一步发展的一些可能的未来趋势,将此作为哺乳动物皮层各区域之间强弱联系的拓扑和功能价值研究的一部分进行了更深更广泛的讨论。本文发表在The Neuroscientist杂志。

    02

    讨论k值以及初始聚类中心对聚类结果的影响_K均值聚类需要标准化数据吗

    摘要:进入二十一世纪以来,科学技术的不断发展,使得数据挖掘技术得到了学者越来越多的关注。数据挖掘是指从数据库中发现隐含在大量数据中的新颖的、潜在的有用信息和规则的过程,是一种处理数据库数据的知识发现。数据挖掘一种新兴的交叉的学科技术,涉及了模式识别、数据库、统计学、机器学习和人工智能等多个领撤分类、聚类、关联规则是数据挖掘技术几个主要的研究领域。在数据挖掘的几个主要研究领域中,聚类是其中一个重要研究领域,对它进行深入研究不仅有着重要的理论意义,而且有着重要的应用价值。聚类分析是基于物以类聚的思想,将数据划分成不同的类,同一个类中的数据对象彼此相似,而不同类中的数据对象的相似度较低,彼此相异。目前,聚类分析已经广泛地应用于数据分析、图像处理以及市场研究等。传统的K均值聚类算法(K-Means)是一种典型的基于划分的聚类算法,该聚类算法的最大的优点就是操作简单,并且K均值聚类算法的可伸缩性较好,可以适用于大规模的数据集。但是K均值聚类算法最主要的缺陷就是:它存在着初始聚类个数必须事先设定以及初始质心的选择也具有随机性等缺陷,造成聚类结果往往会陷入局部最优解。论文在对现有聚类算法进行详细的分析和总结基础上,针对K均值聚类算法随机选取初始聚类中也的不足之处,探讨了一种改进的选取初始聚类中心算法。对初始聚类中心进行选取,然后根据初始聚类中也不断迭代聚类。改进的聚类算法根据一定的原则选择初始聚类中心,避免了K均值聚类算法随机选取聚类中心的缺点,从而避免了聚类陷入局部最小解,实验表明,改进的聚类算法能够提高聚类的稳定性与准确率。

    03
    领券