首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用另一个数据框填充基于一对常用值的数据框列

,可以使用 pandas 中的 merge() 函数来实现。

首先,我们需要有两个数据框,一个是包含常用值的数据框,另一个是需要填充的数据框。假设常用值数据框为 df1,需要填充的数据框为 df2。

接下来,我们可以使用 merge() 函数将两个数据框基于一对常用值进行合并。具体步骤如下:

代码语言:txt
复制
import pandas as pd

# 常用值数据框
df1 = pd.DataFrame({'Key': ['A', 'B', 'C'], 'Value': [1, 2, 3]})

# 需要填充的数据框
df2 = pd.DataFrame({'Key': ['A', 'B', 'C', 'B'], 'Data': ['X', 'Y', 'Z', 'W']})

# 合并数据框
df_merged = pd.merge(df2, df1, on='Key', how='left')

print(df_merged)

输出结果如下:

代码语言:txt
复制
  Key Data  Value
0   A    X      1
1   B    Y      2
2   C    Z      3
3   B    W      2

在上述代码中,我们将 df1 和 df2 根据 'Key' 列进行合并。合并方式使用了左连接('left'),这意味着结果中会保留 df2 的所有行,并根据 df1 中的常用值进行填充。

最终,我们得到了合并后的数据框 df_merged,其中新增了一列 'Value',它是根据 'Key' 列的匹配结果来自动填充的。

对于推荐的腾讯云相关产品,我无法提及云计算品牌商。但是,你可以通过访问腾讯云的官方网站来了解他们提供的云计算相关产品和服务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【Python】基于某些删除数据重复

subset:用来指定特定,根据指定数据去重。默认为None,即DataFrame中一行元素全部相同时才去除。...导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于组合删除数据重复') #把路径改为数据存放路径 name = pd.read_csv('name.csv...从结果知,参数为默认时,是在原数据copy上删除数据,保留重复数据第一条并返回新数据。 感兴趣可以打印name数据,删重操作不影响name。...结果和按照某一去重(参数为默认)是一样。 如果想保留原始数据直接用默认即可,如果想直接在原始数据删重可设置参数inplace=True。...但是对于两中元素顺序相反数据去重,drop_duplicates函数无能为力。 如需处理这种类型数据去重问题,参见本公众号中文章【Python】基于组合删除数据重复。 -end-

19.5K31

【Python】基于组合删除数据重复

最近公司在做关联图谱项目,想挖掘团伙犯罪。在准备关系数据时需要根据两组合删除数据重复,两中元素顺序可能是相反。...本文介绍一句语句解决多组合删除数据中重复问题。 一、举一个小例子 在Python中有一个包含3数据,希望根据name1和name2组合(在两行中顺序不一样)消除重复项。...二、基于删除数据重复 1 加载数据 # coding: utf-8 import os #导入设置路径库 import pandas as pd #导入数据处理库...import numpy as np #导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于组合删除数据重复') #把路径改为数据存放路径 df =...numpy as np #导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于组合删除数据重复') #把路径改为数据存放路径 name = pd.read_csv

14.7K30
  • seaborn可视化数据多个元素

    seaborn提供了一个快速展示数据库中元素分布和相互关系函数,即pairplot函数,该函数会自动选取数据中值为数字元素,通过方阵形式展现其分布和关系,其中对角线用于展示各个元素分布情况...,剩余空间则展示每两个元素之间关系,基本用法如下 >>> df = pd.read_csv("penguins.csv") >>> sns.pairplot(df) >>> plt.show()...函数自动选了数据3元素进行可视化,对角线上,以直方图形式展示每元素分布,而关于对角线堆成上,下半角则用于可视化两之间关系,默认可视化形式是散点图,该函数常用参数有以下几个 ###...#### 3、 x_vars和y_vars 默认情况下,程序会对数据中所有的数值进行可视化,通过x_vars和y_vars可以用列名称来指定我们需要可视化,用法如下 >>> sns.pairplot...通过pairpplot函数,可以同时展示数据多个数值型元素关系,在快速探究一组数据分布时,非常好用。

    5.2K31

    学徒讨论-在数据里面使用平均值替换NA

    最近学徒群在讨论一个需求,就是用数据每一平均数替换每一NA。但是问题提出者自己代码是错,如下: ? 他认为替换不干净,应该是循环有问题。...:我是这么想,也不知道对不对,希望各位老师能指正一下:因为tmp数据中,NA个数不唯一,我还想获取他们横坐标的话,输出结果就为一个list而不是一个数据了。...答案二:使用Hmiscimpute函数 我给出点评是:这样偷懒大法好!使用Hmiscimpute函数可以输入指定来替代NA做简单插补,平均数、中位数、众数。...a=1:1000 a[sample(a,100)]=NA dim(a)=c(20,50) a # 按照,替换每一NA为该平均值 b=apply(a,2,function(x){ x[is.na...,就数据长-宽转换!

    3.6K20

    R 茶话会(七:高效处理数据

    前言 这个笔记起因是在学习DataExplorer 包时候,发现: 这我乍一看,牛批啊。这语法还挺长见识。 转念思考了一下,其实目的也就是将数据指定转换为因子。...换句话说,就是如何可以批量数据指定行或者进行某种操作。...(这里更多强调是对原始数据直接操作,如果是统计计算直接找summarise 和它小伙伴们,其他玩意儿也各有不同,掉头左转: 34....R 数据整理(六:根据分类新增列种种方法 1.0) 其实按照我思路,还是惯用循环了,对数据列名判断一下,如果所取数据中,就修改一下其格式,重新赋值: data(cancer, package...这里就回到开始问题了,如果是希望对数据本身进行处理,而非统计学运算呢?

    1.5K20

    R语言第二章数据处理⑤数据转化和计算目录正文

    正文 本篇描述了如何计算R中数据并将其添加到数据中。一般使用dplyr R包中以下R函数: Mutate():计算新变量并将其添加到数据表中。 它保留了现有的变量。...同时还有mutate()和transmutate()三个变体来一次修改多个: Mutate_all()/ transmutate_all():将函数应用于数据每个。...Mutate_at()/ transmutate_at():将函数应用于使用字符向量选择特定 Mutate_if()/ transmutate_if():将函数应用于使用返回TRUE谓词函数选择...tbl:一个tbl数据 funs:由funs()生成函数调用列表,或函数名称字符向量,或简称为函数。predicate:要应用于或逻辑向量谓词函数。...funs(cm = ./2.54) ) mutate_if():转换由谓词函数选择特定

    4.1K20

    python 数据分析基础 day15-pandas数据使用获取方式1:使用DataFrame.loc

    今天是读《pyhton数据分析基础》第15天,今天读书笔记内容为使用pandas模块数据类型。 数据(DataFrame)类型其实就是带标题列表。...很多时候,整个数据数据并不会一次性用于某一部分析,而是选用某一或几列数据进行分析,此时就需要获取数据部分数据。...获取方式如下: 获取方式1:使用DataFrame.loc[] #调用某两行两交汇数据 #[index1,index2]表示引用索引号为index1和index2两行数据 #[colName1,colName2...]表示引用标题为colName1和colName2数据 DataFrame.loc[[index1,index2],[colName1,colName2]] 获取方式2:使用DataFrame.iloc...[] #调用某两行两交汇数据 #索引号从0开始算,若为连续行数,则算头不算尾 #以下行代码所选取数据相同 #1:3、[1,2]表示行索引号,选取第二行和第三行 #3:5、[3,4]表示索引号,

    1.7K110

    Day5生信入门——数据结构(!选修!直接使用数据变量!没学!!)

    显示工作路径 getwd() 向量是由元素组成,元素可以是数字或者字符串。 表格在R语言中叫数据 要理解其中命令、函数意思!...还可以是字符串/数据等等x<- c(1,2,3) #常用向量写法,意为将x定义为由元素1,2,3组成向量。...数据 1)读取本地数据 A....X是一个数据 colnames(X) #查看列名 rownames(X) #查看行名,默认行名就是行号,1.2.3.4... colnames(X)[1]<-"bioplanet"#有的公司返回数据...列名#也可以提取(优秀写法,而且这个命令还优秀到不用写括号地步,并且支持Tab自动补全哦,不过只能提取一)6)直接使用数据变量!!!!!!

    18000

    盘点使用Pandas解决问题:对比两数据取最大5个方法

    一、前言 前几天在Python星耀交流群有个叫【iLost】粉丝问了一个关于使用pandas解决两数据对比问题,这里拿出来给大家分享下,一起学习。...大概意思是说在DF中有2数据,想每行取两数据最大,形成一个新,该怎么写?最开始【iLost】自己使用了循环方法写出了代码,当然是可行,但是写就比较难受了。...】,这里使用apply方法来解决,代码如下 df['max3'] = df[['cell1', 'cell2']].apply(max, axis=1) df 方法四:【常州-销售-MT】解答 这个方法也是才哥群里一个大佬给思路...使用numpy结合pandas,代码如下: df['max4'] = np.where(df['cell1'] > df['cell2'],df['cell1'], df['cell2']) df...这篇文章基于粉丝提问,针对df中,想在每行取两数据最大,作为新问题,给出了具体说明和演示,一共5个方法,顺利地帮助粉丝解决了问题,也帮助大家玩转Pandas,学习Python相关知识。

    4.1K30

    Excel实战技巧67:在组合中添加不重复使用ADO技巧)

    很多情况下,我们需要使用工作表中数据填充组合,但往往这些数据中含有许多重复。如何去除重复并得到唯一,这是一个永恒的话题,大家也会用到各式各样方法得到结果。...本文讲解一种技巧,使用Recordset(记录集)来获取唯一并将其填充到组合中。 示例数据如下图1所示。在工作表中有一个组合,需要包含A中省份列表,但是A中有很多重复省份数据。 ?...图1 这里可以使用简单记录集快速提取不同省份名并将其装载到组合。...然而,上面的方法更容易,并且使用记录集允许从装载记录集中快速调整查询来捕获另一个字段或者创建另一个组合。...对于ADO初学者来说,先集中了解最常用参数:Provider、Data Source、Extended Properties。 1.Provider:告诉VBA正在使用哪种类型数据源。

    5.6K10

    【Mark一下】46个常用 Pandas 方法速查表

    ,列名为字典3个key,每一为key对应value 2 查看数据信息 查看信息常用方法包括对总体概况、描述性统计信息、数据类型和数据样本查看,具体如表2所示: 表2 Pandas常用查看数据信息方法汇总...例如可以从dtype返回中仅获取类型为bool。 3 数据切片和切块 数据切片和切块是使用不同或索引切分数据,实现从数据中获取特定子集方式。...a或col3为True记录使用isin查找范围基于特定范围数据查找In: print(data2[data2['col1'].isin([1,2])]) Out: col1 col2...'col2=="b"')) Out: col1 col2 col3 1 1 b 1筛选数据中col2为b记录 5 数据预处理操作 Pandas数据预处理基于整个数据或...a True 1 1 b True 2 0 a False直接丢弃带有缺失行fillna填充缺失,可设置为固定以及不同填充方法In: print(data2

    4.8K20

    05.记录合并&字段合并&字段匹配1.记录合并2.字段合并3.字段匹配3.1 默认只保留连接上部分3.2 使用左连接3.3 使用右连接3.4 保留左右表所有数据

    屏幕快照 2018-07-02 21.47.59.png 2.字段合并 将同一个数据不同合并成新。 方法x = x1 + x2 + x3 + ...合并后数据以序列形式返回。...函数merge(x, y, left_on, right_on) 需要匹配数据,应使用用一种数据类型。...返回:DataFrame 参数 注释 x 第一个数据 y 第二个数据 left_on 第一个数据用于匹配 right_on 第二个数据用于匹配 import pandas items...屏幕快照 2018-07-02 22.02.37.png 3.2 使用左连接 即使与右边数据匹配不上,也要保留左边内容,右边未匹配数据用空代替 itemPrices = pandas.merge(...屏幕快照 2018-07-02 21.38.49.png 3.4 保留左右表所有数据行 即使连接不上,也保留所有未连接部分,使用填充 itemPrices = pandas.merge(

    3.5K20

    基于Python数据分析之pandas统计分析

    在实际工作中,我们可能需要处理是一系列数值型数据,如何将这个函数应用到数据每一呢?可以使用apply函数,这个非常类似于R中apply应用方法。...常用有三大类方法,即删除法、填补法和插法。 删除法 当数据某个变量大部分值都是缺失,可以考虑删除改变量;当缺失是随机分布,且缺失数量并不是很多是,也可以删除这些缺失观测。...填充数据 使用一个常量来填补缺失,可以使用fillna函数实现简单填补工作: 1、用0填补所有缺失 df.fillna(0) ?...3、使用常量填充不同 df.fillna({‘a1′:100,’a2′:200,’a3’:300}) ?...很显然,在使用填充法时,相对于常数填充或前项、后项填充使用众数、均值或中位数填充要更加合理一点,这也是工作中常用一个快捷手段。

    3.3K20

    Android 图形处理 —— Matirx 方法详解及应用场景

    上一篇文章《Matrix 原理剖析》 介绍了 Matrix 基础原理,本文介绍 Matrix 一些常用方法以及具体使用场景 Matrix 方法详解 文中部分内容及图片参考自:blog.csdn.net...(RectF dst, RectF src) 和 mapPoints 类似,把当前 Matrix 应用到 src 所指示四个顶点上,然后将变换后四个顶点写入 dst 中,返回是判断矩形经过变换后是否仍为矩形...测控点可以选择任何你认为方便位置,只要 src 与dst一一对应即可。...实现 除此之外,Matrix 应用十分广泛,这里没法一一举,大家在学习了基本原理和常用 api 之后可以自行想象和实践,网上也有很对 Matrix 应用有趣例子。...取景尺寸 我们可以分析出,这里发生了变化是两个矩形:取景和裁剪后图像 根据之前学到内容,我们可以使用 setPolyToPoly 或者 setRectToRect 来描述这一变换,这里我们以

    1.5K10

    00.数据结构关于浮点数运算越界问题1.数据结构2.Pandas两种常用数据结构3.Series系列4.DataFrame数据

    指相互之间存在n种特定关系数据类型集合。...限制:使用期有何限制? 访问:访问其内数据方式是什么? 修改: 对其增删查改方法什么?...2.Pandas两种常用数据结构 类型 注释 Series 系列 DataFrame 数据 使用前需要将pandas 模块引入 from pandas import Series, DataFrame...import pandas as pd 3.Series系列 类似一维数组(ndarray)对象,由一组数据(各种NumPy数据类型)以及与之相关数据标签(索引)组成,用于存储一行或一数据。...index A 0 张三 1 李四 2 王五 Series对象本质上是NumPy数组,因此NumPy数组处理函数可以直接对Series使用

    1.1K10

    数据科学学习手札06)Python在数据操作上总结(初级篇)

    Python 本文涉及Python数据,为了更好视觉效果,使用jupyter notebook作为演示编辑器;Python中数据相关功能集成在数据分析相关包pandas中,下面对一些常用关于数据知识进行说明...pd.DataFrame()中常用参数: data:可接受numpy中ndarray,标准字典,dataframe,其中,字典可以为Series,arrays,常数或列表 index:数据索引...;'outer'表示以两个数据联结键并作为新数据行数依据,缺失则填充缺省  lsuffix:对左侧数据重复列重命名后缀名 rsuffix:对右侧数据重复列重命名后缀名 sort:表示是否以联结键所在列为排序依据对合并后数据进行排序...12.缺失处理 常用处理数据中缺失方法如下: df.dropna():删去含有缺失行 df.fillna():以自定义方式填充数据缺失位置,参数value控制往空缺位置填充,...method控制插方式,默认为'ffill',即用上面最近非缺省填充下面的缺失位置 df.isnull():生成与原数据形状相同数据数据中元素为判断每一个位置是否为缺失返回bool

    14.2K51

    Python代码实操:详解数据清洗

    使用Pandas dropna() 直接删除缺失使用 sklearn.preprocessing 中 Imputer 方法对缺失进行填充和替换,支持3种填充方法。...使用Pandas fillna 填充缺失,支持更多自定义常用预定义方法。 通过 copy() 获得一个对象副本,常用于原始对象和复制对象同时进行操作场景。...上述过程中,主要需要考虑关键点是缺失替换策略,可指定多种方法替换缺失,具体根据实际需求而定,但大多数情况下均值、众数和中位数方法较为常用。如果场景固定,也可以使用特定(例如0)替换。...更有效是,如果数据缺失太多而无法通过列表形式穷举时,replace 还支持正则表达式写法。 当数据全部为空时,任何替换方法都将失效,任何基于中位数、众数和均值策略都将失效。...(['col1', 'col2'])) # 删除数据记录中指定(col1/col2)相同记录 该操作核心方法是 df.drop_duplicates(),该方法作用是基于指定规则判断为重复之后

    4.9K20

    手把手 | 如何用Python做自动化特征工程

    例如,如果我们有另一个包含客户贷款信息表格,其中每个客户可能有多笔贷款,我们可以计算每个客户贷款平均值,最大和最小等统计数据。...每个实体都必须有一个索引,该索引是一个包含所有唯一元素。也就是说,索引中每个只能出现在表中一次。 clients数据索引是client_id,因为每个客户在此数据中只有一行。...将数据添加到实体集后,我们检查它们中任何一个: 使用我们指定修改模型能够正确推断类型。接下来,我们需要指定实体集中表是如何相关。...我们已经知道它们是什么了,但我们刚刚用不同名字来称呼它们!这些只是我们用来形成新功能基本操作: 聚合:基于父表与子表(一对多)关系完成操作,按父表分组,并计算子表统计数据。...一个例子是通过client_id对贷款loan表进行分组,并找到每个客户最大贷款额。 转换:在单个表上对一或多执行操作。一个例子是在一个表中取两个之间差异或取一绝对

    4.3K10
    领券