subset:用来指定特定的列,根据指定的列对数据框去重。默认值为None,即DataFrame中一行元素全部相同时才去除。...导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv('name.csv...四、按照多列去重 对多列去重和一列去重类似,只是原来根据一列是否重复删重。现在要根据指定的列判断是否存在重复(顺序也要一致才算重复)删重。...原始数据中只有第二行和最后一行存在重复,默认保留第一条,故删除最后一条得到新数据框。 想要根据更多列数去重,可以在subset中添加列。...但是对于两列中元素顺序相反的数据框去重,drop_duplicates函数无能为力。 如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-
最近公司在做关联图谱的项目,想挖掘团伙犯罪。在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。...本文介绍一句语句解决多列组合删除数据框中重复值的问题。 一、举一个小例子 在Python中有一个包含3列的数据框,希望根据列name1和name2组合(在两行中顺序不一样)消除重复项。...二、基于两列删除数据框中的重复值 1 加载数据 # coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库...import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 df =...numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv
seaborn提供了一个快速展示数据库中列元素分布和相互关系的函数,即pairplot函数,该函数会自动选取数据框中值为数字的列元素,通过方阵的形式展现其分布和关系,其中对角线用于展示各个列元素的分布情况...,剩余的空间则展示每两个列元素之间的关系,基本用法如下 >>> df = pd.read_csv("penguins.csv") >>> sns.pairplot(df) >>> plt.show()...函数自动选了数据框中的3列元素进行可视化,对角线上,以直方图的形式展示每列元素的分布,而关于对角线堆成的上,下半角则用于可视化两列之间的关系,默认的可视化形式是散点图,该函数常用的参数有以下几个 ###...#### 3、 x_vars和y_vars 默认情况下,程序会对数据框中所有的数值列进行可视化,通过x_vars和y_vars可以用列名称来指定我们需要可视化的列,用法如下 >>> sns.pairplot...通过pairpplot函数,可以同时展示数据框中的多个数值型列元素的关系,在快速探究一组数据的分布时,非常的好用。
所以也可以把数据框看成是多个向量的组合。...1列和第3列 df[1:3, ] # 获取前 3 行 df[, c("Name", "Score")] # 获取指定列 df[df$Score > 85, ] # 条件筛选 添加与删除列 df$Pass...良" #把Score这一列中大于等于85的变成优,小于85的变成良 df 行列转置 #行变成列,列变成行 tran_df <- t(df) tran_df 行列拼接 拼接列:把列拼起来,也就是对多个数据框水平堆叠...,也就是在一个数据框的右侧添加另一个数据框,要求行数相同。...拼接行:把行拼起来,也就是对多个数据框垂直堆叠,也就是在一个数据框的下方添加另一个数据框,要求列数相同。
,可以根据一个或多个变量对数据进行升序或降序排列,帮助用户重新整理数据框中的观测顺序。...Dplyr Mutate create, modify, and delete columns mutate 函数用于添加新变量或修改现有变量,能够基于已有数据创建新的变量列,支持对数据框进行实时的变量操作和修改...Dplyr Filter keep rows that match a condition filter 函数用于根据条件筛选数据行,能够仅保留满足条件的观测,支持根据指定的条件表达式对数据框进行灵活的行筛选操作...Tidyr Pivot Longer from wide pivot_longer 函数用于将宽格式数据转换为长格式数据,能够根据用户指定的列将数据框中的多个列整理成一对 “名-值” 对,便于进一步的分析和处理...Tidyr Pivot Wider from long pivot_wider 函数用于将长格式数据转换为宽格式数据,能够将数据框中的一列分成多个列,根据指定的列名进行展开,使得数据以更直观的宽格式形式呈现
需要在逗号前设定行筛选条件,在逗号后设定列筛选条件。 例如,loc函数的条件设置为:Supplier Name列中姓名包含 Z,或者Cost列中的值大于600.0,并且需要所有的列。...,提供iloc函数根据行索引选取一个单独行作为列索引,提供reindex函数为数据框重新生成索引。...2.7 从多个文件中连接数据 pandas可以直接从多个文件中连接数据。...有时候,除了简单地垂直或平行连接数据,你还需要基于数据集中的关键字列的值来连接数据集。pandas 提供了类似SQL join 操作的merge 函数。...Python 的另一个内置模块NumPy 也提供了若干函数来垂直或平行连接数据。通常是将NumPy 导入为np。
为方便大家理解记忆,对每种数据结构的基本操作概括为四大类: 创建数据结构 往里面添加数据 从里面查询数据 对里面的数据进行修改 这篇文章我们将介绍数据框的使用 数据框 数据框是R语言中的一种类似于表格的数据结构...数据框中的每个向量可以是不同的类型,但同一列的元素必须是相同的类型。 创建数据框 创建数据框的一种常用方法是使用data.frame()函数,它可以将多个向量组合成一个数据框。...例如: # 访问df1数据框中的第一行的值 df1[[1]] # [1] "Alice" "Bob" "Charlie" # 访问df2数据框中的"score"列的值 df2$score #...= 25) cat("根据条件删除age为25岁的行后的数据框:\n") print(df_deleted_age) # 根据条件删除age为25岁的行后的数据框: # name age gender...<- subset(df, select = -c(age)) cat("根据条件删除age列后的数据框:\n") print(df_deleted_age_column) # 根据条件删除age列后的数据框
它可以对顺序数据(例如时间序列)非常有用。 8.删除缺失值 处理缺失值的另一个方法是删除它们。以下代码将删除具有任何缺失值的行。...df2['Balance'].plot(kind='hist', figsize=(8,5)) 11.用 isin 描述条件 条件可能有多个值。....where 函数 它用于根据条件替换行或列中的值。...ser= pd.Series([2,4,5,6,72,4,6,72]) ser.pct_change() 29.基于字符串的筛选 我们可能需要根据文本数据(如客户名称)筛选观测值(行)。...30.设置数据帧样式 我们可以通过使用返回 Style 对象的 Style 属性来实现此目的,它提供了许多用于格式化和显示数据框的选项。例如,我们可以突出显示最小值或最大值。
这个业务问题,使用多维度拆解分析方法,可以把这个业务问题分为两部分:第一部份创造下拉列表,第二部份根据选好的条件查询匹配出相应的费用。...同样的道理,如果B列的利率档没有重复值在创作下拉框时可以直接作为数据验证对话框里的来源。 如果有重复值的话,和机构处理的方式一样,在表格空白处写上这一列删除重复值后的利率作为数据验证对话框里的来源。...如下图所示,C机构改成了E机构,再添加F机构,那么需要在数据验证对话框,把来源处的单元格范围要做相应的修改,再按确定即可。...INDEX函数能根据指定的行号和列号来返回一个值,用法如下: image.png 例如在这个案例中,想要查找A机构,利率档是40%,24期的费用是976元,那么对应的公式是: =INDEX(A2:E17,1,3...由于是多条件查询,而INDEX和MATCH均不是数组公式,要同时按下【ctrl+shift+enter】才能显示正确答案。 这又涉及到另一个问题,什么是数组?
将 “Sales Category” 放在【行】上,“Date” 放在【列】上,“Units” 放在【值】上。 接下来,可以在同一数据集中建立另一个数据透视表。...就像在 Excel 数据透视表中一样,会发现默认值是数字列的【求和】和基于文本列的是【计数】。但与 Excel 不同的是,还会发现一个【不要聚合】 的选项,将在本书后面的章节中将使用这个选项。...(译者注:逆透视的本质是将表示结构的多个属性转换为一个属性的多个值;透视的本质是将某个属性内容转换为结构。...图 7-22 手动创建一个包含 “ia” 的筛选器 当用户不能在筛选器列表中看到数据时,或者需要为筛选器配置一些更复杂的条件,如【且】和【或】条件时,【筛选行】对话框的这个视图非常有用。...图 7-23 【筛选行】对话框的【高级】视图 【基本】视图中的筛选器都是应用于用户所选择的原始列,而【高级】视图允许用户一次将筛选器应用于多个列,添加更多的筛选层(通过【添加子句】按钮),并以任何用户认为合适的方式混合和匹配筛选器
我们向 Shape 和 Shape Base 类添加了一个名为 toImageSrc 的新 API。对于图表和切片器来说也是如此。...这允许用户指定行或列的大小是否应根据其中的文本进行更改。...这样,设计器中就有了一个用于设置 AutoFit 属性的新 API 和一个新界面设置: 页总计 报表插件的 R.V 函数生成工作表中溢出单元格的值。在新版本中,添加了另一个参数来指定当前页面。...列类型如下: 列类型 数据类型 描述 数值 数值 用于大多数具有指定格式的数值 文本 文本 用于常见文本 公式 取决于结果 根据记录中的其他字段计算值 查找 取决于相关字段 查找相关记录中的特定字段 日期...在此版本中,我们已将该选项添加到表格编辑器: 条件格式规则管理器支持当前选择区域 在某些情况下,工作簿可能具有大量条件格式,这可能会使查找特定格式变得复杂。
数据框结构 来看一下结构,亦即这个数据框对象的数据结构,我们将用到printSchema方法。这个方法将返回给我们这个数据框对象中的不同的列信息,包括每列的数据类型和其可为空值的限制条件。 3....这个方法会提供我们指定列的统计概要信息,如果没有指定列名,它会提供这个数据框对象的统计信息。 5. 查询多列 如果我们要从数据框中查询多个指定列,我们可以用select方法。 6....查询不重复的多列组合 7. 过滤数据 为了过滤数据,根据指定的条件,我们使用filter命令。 这里我们的条件是Match ID等于1096,同时我们还要计算有多少记录或行被筛选出来。 8....过滤数据(多参数) 我们可以基于多个条件(AND或OR语法)筛选我们的数据: 9. 数据排序 (OrderBy) 我们使用OrderBy方法排序数据。...这里,我们将要基于Race列对数据框进行分组,然后计算各分组的行数(使用count方法),如此我们可以找出某个特定种族的记录数。 4.
所以实际是用布尔值向量筛选x中的符合条件的元素,也就是执行的是 x[c(TRUE,FALSE,TRUE,TRUE)] 运用上述方式可以筛选另一个向量,也可以筛选自身。...直观上看,数据框更类似矩阵,有行和列两个维度,但是数据框与矩阵的不同是,数据框的每一列可以是不同的模式mode。...比如一列数字,一列字符串,一列布尔值。 所以,数据框可以类比为二维矩阵,当然这里的类比是异质性的,因为每个组件的数据类型不同。 技术层面看,数据框是每个组件长度相等的列表。...数据框是列表的特例,数据框的列构成列表的组件,所以lapply函数会作用于数据框的每一列,返回返回一个列表。但未知错乱,意义不大。...tapply是根据因子水平简历索引的分组,by会查找数据框不同分组的行号,从而产生2个子数据框,分别对应2个性别水平。lm函数被调用2次,作了2次回归分析。
每个实体都必须带有一个索引,它是一个包含所有唯一元素的列。就是说,索引中的每个值只能在表中出现一次。在 clients 数据框中的索引是 client_id,因为每个客户在该数据框中只对应一行。...在将该数据框添加到实体集中后,我们检查整个实体集: ? 列的数据类型已根据我们指定的修正方案被正确推断出来。接下来,我们需要指定实体集中表是如何关联的。...对表来说,每个父亲对应一张父表中的一行,但是子表中可能有多行对应于同一张父表中的多个儿子。 例如,在我们的数据集中,clients 数据框是 loans 数据框的一张父表。...一个例子就是根据 client_id 对 loan 表分组并找到每个客户的最大贷款额。 转换:对一张表中一或多列完成的操作。一个例子就是取一张表中两列之间的差值或者取一列的绝对值。...尽管我们仅指定了一些特征基元,但是特征工具可以通过组合和叠加这些基元来构造新的特征。 ? 完整的数据框包含 793 列的新特征! 深度特征合成 我们现在具备理解深度特征合成(dfs)的一切条件。
矩阵转为数据框,可以加上行名和列名 数据框转为矩阵,有三种方法。...(df2) 3.2 数据框提取列 提取一列:点号或者[],如果列名有空格,不能使用点号 print(df1.gene) print(df1['gene']) type(df1.gene) # 返回series...df1.gene.tolist() # series 转为list df1[['gene']] # 返回数据框 提取多列:在方括号里面写有列名组成的列表 3.3 提取行和列 .iloc:基于整数位置...loc:基于标签(行名或者列名)或是布尔值 import pandas as pd df1 = pd.DataFrame({ 'gene': ['gene' + str(i) for i in...:使用多个条件时,可以用and/or/&/|运算符 3.4 属性 写法与method类型,不带括号 df1.shape df1.index # 行名 df1.columns # 列名 3.5 初级统计方法
,后续的参数是条件,这些条件是需要同时满足的,另外,条件中取 缺失值的观测自动放弃,这一点与直接在数据框的行下标中用逻辑下标有所不同,逻辑下标中有缺失值会在结果中 产生缺失值。...dplyr 包的 distinct() 函数可以对数据框指定若干变 量,然后筛选出所有不同值,每组不同值仅保留一行。...2.6 arrange 按照数据框里的某列或某几列,对所有行进行排序。可以使用 desc 产生倒序,或写入多个列使其按照多个列进行排序。...对于即将合并的新列,需要使用引号;但对于想要合并的多个列名,可以不用使用引号。sep 参数设定多列合并后不同数据分隔使用的分割符。...nest 与unnest 对于数据框,我们可以使用split 将数据框按某列拆分为多个数据框,并储存在列表中。
使用dplyr处理关系数据 在实际应用中,我们常会涉及到多个数据表,必须综合使用它们才能找到关键信息。存在于多个表中的这种数据统称为关系数据。...处理关系数据有三类操作: 合并连接:向数据框中加入新变量,新变量的值是另一个数据框中的匹配观测。 筛选连接:根据是否匹配另一个数据框中的观测,筛选数据框中的观测。...nycflights13 中包含了与 flights 相关的 4 个 tibble: 数据表 信息 airlines 可以根据航空公司的缩写码查到公司全名。...下面借助图形来帮助理解连接的原理: ? 有颜色的列表示作为“键”的变量:它们用于在表间匹配行。灰色列表示“值”列,是与键对应的值。...它有3种连接类型,这些连接会向每个表中添加额外的“虚拟”观测,这个观测的值用NA来填充。
添加子级节点弹窗里的确认按钮鼠标单击时,我们用添加行的交互,将输入框里的数据,更新到中继器表格里。...我们在用添加行的交互,将no+1,例如10+1等于11添加到no列里,然后前面记录的tree列的值,以及输入框的值都添加上去即可。这样就完成添加了。...这样我们就完成了增加子级节点的操作了,当然了,我们在这之前还可以增加对文本框是否必填的条件判断,例如文本为空时,点击确认按钮弹出对应的提示弹窗,这些可以根据需要添加。...树节点的值,我们要根据所在是第几级为条件,设置对应tree列的值,例如是在第6级,就将tree6的值设置到第一个输入框;如果是在第5级,就将tree5的值设置到第一个输入框……在修改节点弹窗确认按钮鼠标单击时...这里我们根据所在层级,写不同的更新条件即可。2.5删除节点内容点击删除按钮后,和前面一样,先用设置文本记录tree列的值,然后弹出删除确认的按钮。
str_split(x," ")根据字符串内" "(空格)进行拆分class(str_split(x," "))1 "list"#获得向量:[1]#str_split()可对多个字符串进行拆分,每个字符串成为一个数据框...2.1 排序arrange(test,Sepal.Length)#按照某一列对整个数据框进行排序。...#管道符号快捷键“Ctrl”+“shift”+“M”3 条件和循环*3.1 if语句if(1){ }1:为一个逻辑值,不能为多个逻辑值组成的向量#若为T,则继续执行后续语句;若为T,则不继续执行长脚本管理方式...*4 可保存任意数据结构if(2){code1}else{code2}2:若逻辑值为TRUE,则执行code1,反之执行code2多个条件仍适用if(){code1}else if(){code2}else...k2,"tumor","normal")3.4 for循环for(i in x){CODE}#对x中的每个元素i执行相同的代码CODE#有几个元素则执行几次,函数本身不存在判断条件,可自行添加其它函数进行判断