首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

为什么索引Numpy列会创建一个副本,而不是行或一维数组?

索引Numpy列会创建一个副本,而不是行或一维数组的原因是因为Numpy的数组是按行存储的,而不是按列存储的。当我们索引一个列时,Numpy会创建一个新的数组,该数组包含原始数组中相应列的所有元素。这是因为在内存中,数组的元素是按行连续存储的,而不是按列连续存储的。

创建副本的好处是可以避免对原始数组的修改。如果我们直接对索引的列进行修改,那么原始数组中相应的元素也会被修改。通过创建副本,我们可以在不影响原始数组的情况下对副本进行操作。

然而,创建副本也会带来一些性能上的开销,因为需要额外的内存来存储副本。如果对内存使用有限制或对性能要求较高,可以考虑使用其他方法来避免创建副本,例如使用视图(view)或转置(transpose)操作。

总结起来,索引Numpy列会创建一个副本,而不是行或一维数组,是因为Numpy数组按行存储,创建副本可以避免对原始数组的修改,但也会带来一些性能上的开销。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Pandas图鉴(三):DataFrames

df.shape返回行和列的数量。 df.info()总结了所有相关信息 还可以将一个或几个列设置为索引。...第二种情况,它对行和列都做了同样的事情。向Pandas提供列的名称而不是整数标签(使用列参数),有时提供行的名称。...下一个选择是用NumPy向量的dict或二维NumPy数组构造一个DataFrame: 请注意第二种情况下,人口值是如何被转换为浮点数的。实际上,这发生在构建NumPy数组的早期。...例如,插入一列总是在原表进行,而插入一行总是会产生一个新的DataFrame,如下图所示: 删除列也需要注意,除了del df['D']能起作用,而del df.D不能起作用(在Python层面的限制...然而,另一个快速、通用的解决方案,甚至适用于重复的行名,就是使用索引而不是删除。

44420

NumPy 笔记(超级全!收藏√)

= False, ndmin = 0) 参数说明:  名称描述object数组或嵌套的数列dtype数组元素的数据类型,可选copy对象是否需要复制,可选order创建数组的样式,C为行方向,F为列方向...external_loop给出的值是具有多个值的一维数组,而不是零维数组 广播迭代  如果两个数组是可广播的,nditer 组合对象能够同时迭代它们。...例如,一个数组的形状改变也会改变另一个数组的形状。  视图或浅拷贝  ndarray.view() 方会创建一个新的数组对象,该方法创建的新数组的维数更改不会更改原始数据的维数。...使用切片创建视图修改数据会影响到原始数组。  副本或深拷贝  ndarray.copy() 函数创建一个副本。 对副本数据进行修改,不会影响到原始数据,它们物理内存不在同一位置。 ...NumPy 矩阵库(Matrix)  NumPy 中包含了一个矩阵库 numpy.matlib,该模块中的函数返回的是一个矩阵,而不是 ndarray 对象。

4.6K30
  • Python一个万万不能忽略的警告!

    2 警告是什么 首先要理解的是,SettingWithCopyWarning 是一个警告,而不是错误 Erro,警告的作用是提醒程序员,他们的代码可能存在潜在的错误或问题,但是这些操作仍然是该编程语言中的合法操作...在采取下一步行动之前,花点时间了解为什么会获得这一警告。...,也就是重新生成了一个对象,然后再对满足条件的行,其列score赋值,当然和原数据没有任何关系了。...Pandas 确定返回一个视图还是一个副本的逻辑,源于它对 NumPy 库的使用,这是 Pandas 库的基础。视图实际上是通过 NumPy 进入 Pandas 的词库的。...Pandas 兼顾多种索引功能,并且保持高效地使用其 NumPy 内核的能力。 最终,Pandas 中的索引被设计为有用且通用的方式,其核心并不完全与底层 NumPy 数组的功能相结合。

    1.6K30

    再见了,Numpy!!

    总结,种种原因,NumPy为我们,或者说数据学习者、工作者提供了一个强大、高效且易于使用的工具,使得咱们能够更专注于数据的分析和模型的构建,而不是低级的数值计算。...也可以当做一个小册子,拿来即用,立即套到自己的实际应用中。 1. 数组创建 numpy.array(): 从常规Python列表或元组创建数组。...numpy.argmax(), numpy.argmin(): 查找数组中最大或最小元素的索引。 numpy.where(): 根据条件返回数组中的索引。...灵活地组合和分解数组以满足数据处理的需求。 13. 数组的复制和视图 .copy(): 创建数组的深度副本。 视图(View): 创建数组的浅副本,当原数组改变时,视图也会跟着改变。...这些代码示例展示了深度副本和视图(浅副本)之间的区别:深度副本不影响原始数组,而视图的修改会影响原始数组。 14. 条件逻辑 numpy.where(): 用于基于条件选择数组元素。

    26510

    Numpy初探

    标准数据类型numpy数组的基本操作NumPy数组的属性数组索引:获取单个元素数组切片:获取子数组非副本视图的子数组创建数组的副本数组的变形数组拼接和分裂 《Python数据科学手册》读书笔记 理解Python...以下是几个示例: # 创建一个所有值为0,长度为10的数组 np.zeros(10,dtype=int) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) # 创建一个3行5列所有值为...[0] array([12, 5, 2, 4]) 非副本视图的子数组 关于数组切片有一点很重要也非常有用, 那就是数组切片返回的是数组数据的视图, 而不是数值数据的副本。...创建数组的副本 尽管数组视图有一些非常好的特性, 但是在有些时候明确地复制数组里的数据或子数组也是非常有用的。...另外一个常见的变形模式是将一个一维数组转变为二维的行或列的矩阵。

    2.1K20

    Python3快速入门(十二)——Num

    [1:7:2]) # output: # [1 2 3 4 5 6 7 8 9] # [2 4 6] ndarray数组可以通过整数数组进行索引,通常需要分别构造行索引和列索引的数组,通过行索引数组和列索引数组组合使用最终定位数组的索引...f_index:可以跟踪 Fortran 顺序的索引 multi-index:每次迭代可以跟踪一种索引类型 external_loop:给出的值是具有多个值的一维数组,而不是零维数组 5、广播迭代 如果两个数组是可广播的...(a, order='K') 创建给定数组a的一个副本,可以作为数组的方法使用。...一个 mxn的矩阵是一个由m行(row)和n列(column)元素排列成的矩形阵列,矩阵里的元素可以是数字、符号或数学式。...order参数,可选项为C(行序优先) 或者 F(列序优先)。 矩阵是二维的,而 ndarray 是一个 n 维数组。 矩阵与ndarray是可互换的。

    4.7K20

    NumPy基础

    将布尔数组作为掩码    七、花哨索引八、数组的排序 [ NumPy version: 1.18.1 ]  import numpy as np 一、创建数组  # 1.从python列表创建数组 #...#第1行 x2[0]        #第1行,空切片:可省略 # 4.非副本视图的子数组 #数组切片返回的是数组数据的视图,不是数值数据的副本(python列表中切片是值的副本)。...#处理大数据集时可以获取或处理这些数据集的片段而不用复制底层的数据缓存。 # 5.创建数组的副本 x2[:2, :2].copy() 4....ind = [3, 7, 4] x[ind] # 利用花哨索引使结果的形状与索引数组形状一致,而不是与被索引数组形状一致 ind = np.array([[3, 7], [4, 5]]) x[ind]...x[i]     #结果等同np.sort(x) # 沿着多维数组的行或列排序(将行或列作为独立数组,行列值之间的关系将丢失) np.sort(X, axis=0)     #对X的每一列排序 np.sort

    1.3K30

    NumPy 1.26 中文官方指南(三)

    m 行 n 列的a副本 [a b] np.concatenate((a,b),1)或np.hstack((a,b))或np.column_stack((a,b))或np.c_[a,b] 连接a和b的列...你可以拥有标准向量或行/列向量。 直到 Python 3.5 之前,使用数组类型的唯一劣势是你必须使用dot而不是*来对两个张量(标量积,矩阵向量乘法等)进行乘法运算。...此外,Python 通常被嵌入为脚本语言到其他软件中,在那里也可以使用 NumPy。 MATLAB 数组切片使用传值语义,具有延迟写入复制的机制,以防在需要之前创建副本。切片操作会复制数组的部分。...重塑和线性索引: MATLAB 始终允许使用标量或线性索引访问多维数组,而 NumPy 则不是。...这不是最佳的,因为将数组强制转换为 ndarrays 可能会导致性能问题或创建副本和元数据丢失,因为原始对象及其可能具有的任何属性/行为都会丢失。

    38310

    Python Numpy数组高级索引操作指南

    高级索引进一步扩展了这些功能,允许我们使用多个数组或布尔值作为索引。这能够对数组进行更加复杂的操作,例如根据特定的条件或模式选择多个元素、行或列。...花式索引 花式索引是一种使用整数数组或列表对Numpy数组进行索引的方式。与常规的切片索引不同,花式索引可以指定多个非连续的索引来访问数组中的元素。提供了灵活的方式来选择数组中的特定元素或行、列。...二维数组的花式索引 花式索引同样适用于多维数组,允许我们选择指定行或列。...row_indices表示要提取的行,而col_indices表示要提取的列。 多维数组的花式索引 对于多维数组,花式索引可以在多个维度上同时使用。...通过使用布尔数组进行索引,可以快速提取出满足条件的元素。 二维数组的布尔索引 布尔索引同样适用于多维数组,用于根据条件筛选行或列。

    19710

    NumPy Essentials 带注释源码 二、NumPy 数组对象

    # 来源:NumPy Essentials ch2 数组索引和切片 # 创建 100x100 个 0~1 随机数 x = np.random.random((100, 100)) # 取第 42...行 87 列的元素(从零开始) y = x[42, 87] # 取第 k 行的所有元素 # 等价于 x[k] 和 x[k, ...] print(x[k, :]) a = np.array([[...''' 计算第零列的和 ''' return np.sum(x[:, 0]) ''' 我们可以看到,C 风格数组按行访问比较快 F 风格数组按列访问比较快 %timeit...# 视图不共享 NumPy 对象,共享底层数据 # 副本不共享 NumPy 对象,不共享底层数据 x = np.random.rand(100,10) # 切片和索引都会产生视图 # 而不是副本...# zeros(size) 和 ones(size) 创建指定形状的全零或全一数组 # eye(n) 创建 n 维单位矩阵 # full(size, n) 创建指定形状的纯量数组,所有元素都为 n 数据类型

    51730

    NumPy 1.26 中文官方指南(二)

    使用empty而不是zeros(或类似物)的原因是速度—只需确保稍后填充每个元素!...当第一个索引改变时,矩阵按列存储在内存中一列一列地变化。这就是为什么 Fortran 被认为是一种基于列的语言。而在 C 中,最后一个索引最快变化。矩阵按行存储,使之成为基于行的语言。...两者之间的主要区别是使用ravel()创建的新数组实际上是对父数组的引用(即“视图”)。这意味着对新数组的任何更改也会影响父数组。由于ravel不创建副本,它在内存上是高效的。...使用empty而不是zeros(或类似的东西)的原因是速度快 - 只需确保之后填充每个元素!...随着第一个索引的变化移动到下一行,矩阵按列存储。这就是为什么 Fortran 被认为是一种列主语言。另一方面,在 C 中,最后的索引变化最快。矩阵按行存储,使其成为一种行主语言。

    35410

    一篇文章学会numpy

    复制数组 注释: 导入NumPy库,并将其命名为np。 通过np.array()函数创建一个一维数组。 使用.copy()方法创建原始数组的副本。 使用print()函数输出副本数组。...然后,使用.copy()方法创建一个名为copy_arr的副本数组,并使用print()函数输出副本数组。由于copy_arr是arr的副本,因此它与原始数组完全相同。 3....可以看到,新数组已按升序排列。 4. 数组索引、切片和迭代 注释: 导入NumPy库,并将其命名为np。 通过np.array()函数创建一个一维数组。 使用索引方式输出第一个元素。...上述示例将原始数组转换为了一个两行三列的二维数组。 6. 矩阵操作 注释: 导入NumPy库,并将其命名为np。 使用np.array()函数分别创建两个二维数组A和B,用来表示矩阵乘法的操作数。...在本示例中,将使用reshape()方法将原数组初始化为一个两行、三列的数组。因此,函数返回一个Reshaped数组,其中第一行包含数字[1, 2, 3],而第二行包含数字[4, 5, 6]。

    10010

    Pandas图鉴(二):Series 和 Index

    Pandas 给 NumPy 数组带来的两个关键特性是: 异质类型 —— 每一列都允许有自己的类型 索引 —— 提高指定列的查询速度 事实证明,这些功能足以使Pandas成为Excel和数据库的强大竞争者...默认情况下,当创建一个没有索引参数的Series(或DataFrame)时,它初始化为一个类似于Python的range()的惰性对象。...对于非数字标签来说,这有点显而易见:为什么(以及如何)Pandas在删除一行后,会重新标记所有后续的行?对于数字标签,答案就有点复杂了。...Pandas有df.insert方法,但它只能将列(而不是行)插入到数据框架中(而且对序列根本不起作用)。...例如: 要通过标签指定插入点,你可以把pdi.find和pdi.insert结合起来,如下图所示: 注意,与df.insert不同,pdi.insert返回一个副本,而不是在原地修改Series/DataFrame

    33820

    NumPy 基础知识 :1~5

    同样,可以使用x[:,k]访问列。 反转数组也类似于反转列表,例如x[::-1]。 数组的索引部分也称为数组的切片,它创建端口或整个数组的副本(我们将在后面的部分中介绍副本和视图) 。...这意味着,当在数组中移动时,行索引将首先增加,然后列索引将增加。 在多维 C 样式数组的情况下,最后一个维度首先递增,然后是最后一个,但最后一个递增,依此类推。...通常,切片数组会创建一个视图,对其进行索引会创建一个副本。 让我们通过一些代码片段研究这些差异。 首先,让我们创建一个随机的100x10数组。...该代码段打印出五行零。 这是因为y只是一个视图,是对x的引用。 接下来,让我们创建一个副本以查看区别。...x按列广播,而y按行广播,因为它们的形状在形状上均等于1。 满足第二个广播条件,并且新结果数组是3x3。

    5.7K10

    基于Python的OpenCV有关像素的操作

    相当于C语言的int,通常为int32或int64 ·intp ·用于索引的整数,相当于C语言中的size_t,通常为int32或int64...参数为嵌套序列,或者需要副本满足数据类型的顺序要求时,才会生成副本。...如果object参数不是数组,则新穿件的数组将按行数列,如果值为F,则按照列排列;如果object参数是一个数组,则以下顺序成立:C(按行)、F(按列)、A(原顺序)、K(元素在内存中的出现顺序)。...如果值为True,则传递子类,否则返回的数组将强制为基类数组(默认值) ·ndmin:指定生成数组的最小维数 ·创建随机数组 ·numpy.random.randint...:终止索引,若不写任何值,则表示直到末尾的全部索引 ·step:步长 ·创建图像 ·创建黑白图像

    2K31

    NumPy 最详细教程(1):NumPy 数组

    如果 object 不是数组,则新创建的数组将按行排列(C),如果指定了(F),则按列排列。 如果 object 是一个数组,则以下成立。...属性 说明 ndarray.ndim 秩,即轴的数量或维度的数量 ndarray.shape 数组的维度,对于矩阵,n 行 m 列 ndarray.size 数组元素的总个数,相当于 .shape 中...1、ndarray.shape 返回一个包含数组维度的元组,对于矩阵,n 行 m 列,它也可以用于调整数组维度。...10 12 14 16 18] 2、numpy.linspace 创建一个一维等差数列的数组,与 arange 函数不同,arange 是固定步长,而 linspace 则是固定元素数量。...的内存中创建数组,从上例中可以看出,改变 array.array 的值,numpy.frombuffer 的值也会跟着改变,由此可见。

    3.6K20

    Python 数据分析(一):NumPy 基础知识

    使用 2.1 ndarray ndarray 即 n 维数数组类型,它是一个相同数据类型的集合,以 0 下标为开始进行集合中元素的索引。...=0) p_object:数组或嵌套的数列 dtype:数组元素的数据类型 copy:是否需要复制 order:创建数组的样式,C 为行方向,F 为列方向,A 为任意方向(默认) subok:默认返回一个与基类类型一致的数组...NumPy 数组支持索引、切片操作,还可以进行迭代,先看一下一维数组。...print(arr[:, 0]) # 连续取多列 print(arr[:, 2:]) # 取不连续的多列 print(arr[:, [0, 2]]) 2.4 副本与视图 视图(浅复制)只是原有数据的一个引用...import numpy as np a = np.arange(1, 6) # 创建副本 b = a.copy() print(a is b) b[1] = 10 print(a[1]) print

    85960

    NumPy 和 Pandas 数据分析实用指南:1~6 全

    我们还可以创建一个由 16 位浮点数填充的数组。 该数组看起来类似于整数数组。 1 的末尾有一个圆点; 这有点表明包含的数据是浮点而不是整数。...返回了一个新对象,但是该对象不是数组的新副本; 它是数组内容的视图。 因此,如果我们希望创建一个独立的副本,则在切片时也需要使用copy方法,如我们之前所见。...尽管只有一列,但只有一列和一行,而不是只有一行和一列是没有意义的。.../img/280c0309-eb08-4c7f-a163-d90d2c923790.png)] 我还想创建一个仅包含鸢尾花副本最后一列的新数组,并创建另一个包含其余列和全为 1 的列的数组。...我们可以更改apply的axis参数,以便将其应用于行(即跨列),而不是应用于列(即跨行)。applymap具有与应用不同的目的。

    5.4K30
    领券