首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

下面这个函数的时间复杂度是O(n)还是O(1)不变?

这个函数的时间复杂度是O(1)不变。

时间复杂度是用来衡量算法执行时间随输入规模增长而变化的量度。O(1)表示无论输入规模的大小如何变化,算法的执行时间都是恒定的,即常数时间。而O(n)表示算法的执行时间与输入规模成正比,即线性时间。

对于给定的函数,如果它的执行时间与输入规模n无关,即使n变得非常大,函数的执行时间仍然保持不变,那么它的时间复杂度就是O(1)。相反,如果函数的执行时间随着输入规模n的增大而线性增长,那么它的时间复杂度就是O(n)。

在这个问题中,没有给出具体的函数代码,因此无法准确判断函数的时间复杂度。但是根据问题描述,可以推断出这个函数的时间复杂度是O(1)不变,即无论输入规模n的大小如何变化,函数的执行时间都保持恒定。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

时间复杂度o(1), o(n), o(logn), o(nlogn)

1时间复杂度o(1), o(n), o(logn), o(nlogn)。算法时间复杂度时候有说o(1), o(n), o(logn), o(nlogn),这是算法时空复杂度表示。...不仅仅用于表示时间复杂度,也用于表示空间复杂度O后面的括号中有一个函数,指明某个算法耗时/耗空间与数据增长量之间关系。其中n代表输入数据量。 2、时间复杂度O(1)。...最低时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。...4、时间复杂度O(logn)。 当数据增大n倍时,耗时增大logn倍(这里log是以2为底,比如,当数据增大256倍时,耗时只增大8倍,比线性还要低时间复杂度)。...5、时间复杂度O(nlogn)。 就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。 归并排序就是O(nlogn)时间复杂度

1.4K10

【转】算法中时间复杂度概括——o(1)、o(n)、o(logn)、o(nlogn)

在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn)来表示对应算法时间复杂度。这里进行归纳一下它们代表含义:这是算法时空复杂度表示。...不仅仅用于表示时间复杂度,也用于表示空间复杂度O后面的括号中有一个函数,指明某个算法耗时/耗空间与数据增长量之间关系。其中n代表输入数据量。...比如时间复杂度O(n),就代表数据量增大几倍,耗时也增大几倍。比如常见遍历算法。 再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n平方倍,这是比线性更高时间复杂度。...再比如O(logn),当数据增大n倍时,耗时增大logn倍(这里log是以2为底,比如,当数据增大256倍时,耗时只增大8倍,比线性还要低时间复杂度)。...这个复杂度高于线性低于平方。归并排序就是O(nlogn)时间复杂度O(1)就是最低时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变

1.2K10
  • 算法复杂度O(1),O(n),O(logn),O(nlogn)含义

    相信很多开发同伴们在研究算法、排序时候经常会碰到O(1),O(n),O(logn),O(nlogn)这些复杂度,看到这里就会有个疑惑,这个O(N)到底代表什么呢?带着好奇开始今天文章。...首先o(1), o(n), o(logn), o(nlogn)用来表示对应算法时间复杂度,这是算法时间复杂度表示。不仅仅用于表示时间复杂度,也用于表示空间复杂度。...其作用: 时间复杂度指执行这个算法所需要计算工作量; 空间复杂度指执行这个算法所需要内存空间; 时间和空间都是计算机资源重要体现,而算法复杂性就是体现在运行该算法时计算机所需资源多少;...O后面的括号中有一个函数,指明某个算法耗时/耗空间与数据增长量之间关系。其中n代表输入数据量。 时间复杂度O(n)—线性阶,就代表数据量增大几倍,耗时也增大几倍。比如常见遍历算法。...这个复杂度高于线性低于平方。归并排序就是O(nlogn)时间复杂度

    6.8K30

    将判断 NSArray 数组是否包含指定元素时间复杂度O(n) 降为 O(1)

    前言 NSArray 获取指定 元素 位置 或者 判断是否存在指定 元素 时间复杂度 O(n)(包含特定元素时,平均耗时 O(n/2),如果不包含特定元素,耗时 O(n))。...当我们需要频繁进行该操作时,可能会存在较大性能问题。 该问题背后原因很简单。官方文档明确指出 NSArray 从第 0 位开始依次判断是否相等,所以判断次数 nn 等于数组长度) ?...image 本文会介绍一个特别的方案,通过将数组转为字典,我们可以将时间复杂度降低到 O(1) 级别。...image 通过类似的思想,我们同样可以 将普通 NSArray 转换为 NSDictionary 将普通 NSArray 转换为 NSDictionary 下面,我们按照以下规则设计两个转换方法...image 通过测试日志,我们可以发现该方案可以成功将时间复杂度降低到 O(1) 级别

    1.8K20

    合并两个有序数组,要求时间复杂度O(n),空间复杂度O(1)

    思路:因为数组已经有序,因此我们可以直接从两个数组末位开始比较,将大一个直接放到第一个数组末尾,此时必须要求a数组空间大小能够同时填充a数组和b数组有效元素,然后依次比较两个数组元素大小即可...代码实现: #include void merge(int *a, int n, int *b, int m) { int i = n-1;//a数组最后一个有效元素下标...int j = m-1;//b数组最后一个有效元素下标 int index = n+m-1; //合并数组最后一位下标 while (index) { if (i && a[i]>a...[j]) a[index --] = a[i --]; else a[index --] = b[j --]; } } int main() { int a[] = {1,3,5,7,9,0,0,0,0,0..., 5, b, m); for_each(a, a+n, [](int x) {cout << x << " ";}); return 0; }

    50210

    O(1)时间复杂度删除链表节点

    前言 有一个单向链表,给定了头指针和一个节点指针,如何在O(1)时间内删除该节点?本文将分享一种实现思路来解决这个问题,欢迎各位感兴趣开发者阅读本文。...13 修改节点9指针指向,将其指向节点13,就完成了节点10删除 image-20220209222408426 通过这种方式,我们的确删除了给定节点,但是需要从头开始遍历链表寻找节点,时间复杂度...O(n)。...时间复杂度分析:对于n-1个非尾节点而言,我们可以在O(1)时间内利用节点覆盖法实现删除,但是对于尾节点而言,我们仍然需要按序遍历来删除节点,时间复杂度O(n)。...那么,总时间复杂度就为:[(n-1) * O(1) + O(n)] / n,最终结果还是 O(1),符合题目要求。

    73230

    Leetcode 234 Palindrome Linked List 复杂度时间O(n) 和空间(1)解法

    大家好,又见面了,我全栈君。 1. 问题描写叙述   给定一个单链表,推断其内容是不是回文类型。 比如1–>2–>3–>2–>1时间和空间复杂都尽量低。 ---- 2....方法与思路   1)比較朴素算法。   因为给定数据结构单链表,要訪问链表尾部元素,必须从头開始遍历。为了方便推断。...我们能够申请一个辅助栈结构来存储链表内容,第一次遍历将链表节点值依次入栈,第二次遍历比較推断是否为回文。...时间O(n)和空间O(1)解法   既然用到了栈,能够想到递归过程本身就是出入栈过程,我们能够先递归訪问单链表,然后做比較。这样就省去了辅助空间,从而将空间复杂度降为O(1)。

    28120

    又一个,时间复杂度O(n)排序!

    桶排序(Bucket Sort),一种时间复杂度O(n)排序。 画外音:百度“桶排序”,很多文章错误,本文内容与《算法导论》中桶排序保持一致。...桶排序需要两个辅助空间: (1)第一个辅助空间,桶空间B; (2)第二个辅助空间,桶内元素链表空间; 总的来说,空间复杂度O(n)。...1)桶X内所有元素,一直有序; (2)插入排序稳定,因此桶内元素顺序也是稳定; 当arr[N]中所有元素,都按照上述步骤放入对应桶后,就完成了全量排序。...桶排序伪代码: bucket_sort(A[N]){ for i =1 to n{ 将A[i]放入对应桶B[X]; 使用插入排序,将A[i]插入到...桶排序(Bucket Sort),总结: (1)桶排序,一种复杂度O(n)排序; (2)桶排序,一种稳定排序; (3)桶排序,适用于数据均匀分布在一个区间内场景; 希望这一分钟,大家有收获。

    99830

    数据结构原理:Hash表时间复杂度为什么O(1)?

    Hash 表时间复杂度为什么 O(1)? 想要回答这个问题,就必须要了解 Hash 表数据结构原理,以及先从数组说起。...比如要查询下标为 2元素,可以计算出这个数据在内存中位置 1008,从而对这个位置数据 241 进行快速读写访问,时间复杂度O(1)。...随机快速读写数组一个重要特性,但是要随机访问数据,必须知道数据在数组中下标。如果只是知道数据值,想要在数组中找到这个值,那么就只能遍历整个数组,时间复杂度O(N)。...如果只知道数据或者数据中部分内容,想在数组中找到这个数据,还是需要遍历数组,时间复杂度O(N)。...如图所示: 因为有 Hash 冲突存在,所以“Hash 表时间复杂度为什么 O(1)?”

    56811

    Python-排序-有哪些时间复杂度O(n)排序算法?

    烧脑题目:如何在 O(n) 时间复杂度内按年龄给 100 万用户信息排序? 带着这个问题来学习下三个线性排序算法。...你可能会问了,假如桶个数 m,每个桶中数据量平均 n/m, 这个时间复杂度明明 m*(n/m)*(log(n/m)) = n log(n/m),怎么可能 O(n) 呢 ?...这个问题非常好,原因这样,当桶个数 m 接近与 n 时,log(n/m) 就是一个非常小常数,在时间复杂度时常数可以忽略。...比如极端情况下桶个数和元素个数相等,即 n = m, 此时时间复杂度就可以认为 O(n)。...根据每一位来排序,我们利用上述桶排序或者计数排序,它们时间复杂度可以做到 O(n)。如果要排序数据有 k 位,那我们就需要 k 次桶排序或者计数排序,总时间复杂度 O(k*n)。

    1.5K20

    (面试)场景方案:如何设计O(1)时间复杂度抽奖算法?

    对于不同概率抽奖配置,我们也有为它设计出不同抽奖算法策略。让万分位以下这类频繁配置,走O(1)时间复杂度。...如;O(n)、O(logn) 如图; 算法1O(1) 时间复杂度算法,在抽奖活动开启时,将奖品概率预热到本地(Guava)/Redis。如,10%概率,可以是占了1~10数字区间,对应奖品A。...算法2;O(n) ~ O(logn)算法,当奖品概率非常大时候,达到几十万以上,我们就适合在本地或者 Redis 来初始化这些数据存到 Map 里了。...O(1)、O(logn) 时间复杂度算法,装配和抽奖实现都是不同。...2.2.1 O(1) 时间复杂度 @Slf4j @Component("o1Algorithm") public class O1Algorithm extends AbstractAlgorithm

    13710

    O(1)时间复杂度删除单链表中某个节点

    给定链表头指针和一个结点指针,在O(1)时间删除该结点。...一般单链表删除某个节点,需要知道删除节点前一个节点,则需要O(n)遍历时间,显然常规思路不行。...可见,该方法可行,但如果待删除节点为最后一个节点,则不能按照以上思路,没有办法,只能按照常规方法遍历,时间复杂度O(n),是不是不符合题目要求呢?...其实我们分析一下,仍然满足题目要求,如果删除节点为前面的n-1个节点,则时间复杂度O(1),只有删除节点为最后一个时,时间复杂度才为O(n),所以平均时间复杂度为:(O(1) * (n-1) +...O(n))/n = O(1);仍然为O(1).下面见代码: 1 /* Delete a node in a list with O(1) 2 * input: pListHead - the

    84580

    任务插入时间复杂度优化到 O(1),Timing Wheel时间怎么做到?

    这些延迟队列其实就是一个用最小堆实现优先级队列,因此,插入一个任务时间复杂度O(logN),取出一个任务执行后调整堆时间也是O(logN)。...但是对于kafka这样一个高吞吐量系统来说,O(logN)速度还不够,为了追求更快速度,kafka设计者使用了Timing Wheel数据结构,让任务插入时间复杂度达到了O(1)。...槽数量还是一样,其他属性也是继承自第一层时间轮。这时第二层时间轮所能表示时间范围就是0~400Ms了。...= null) overflowWheel.advanceClock(currentTime) } } 总结 相比于常用DelayQueue时间复杂度O(logN),TimingWheel...数据结构在插入任务时只要O(1),获取到达任务时间复杂度也远低于O(logN)。

    1K30

    O(1)时间复杂度删除链表节点复制节点

    给定一个单链表中一个等待被删除节点(非表头或表尾)。请在在O(1)时间复杂度删除该链表节点。...Linked list is 1->2->3->4, and given node 3, delete the node in place 1->2->4 复制节点值 删除节点一般做法找到要删除节点前一个节点...,然后把这个节点next指针指向要删除节点下一个节点,一般都是这样做这个题要求O(1)时间复杂度,显然不允许遍历搜索,而且给定节点指针。...我们要删除这个节点,但是我们通过操作只能删除它下一个节点,那我们能不能把下一个节点数据拷贝过来到这个节点,然后把下个节点删除,这样就相当于把这个节点删除了 我怎么会想到这个方法呢?...写起来就不是一般简单了,题目中默认此节点不是表头或表尾,所以这种方法完全可以,如果表尾的话就不好玩了!

    77920

    【算法复习3】时间复杂度 O(n) 排序 桶排序 计数排序基数排序

    对要排序数据要求很苛刻 重点掌握这些排序算法适用场景 【算法复习3】时间复杂度 O[n] 排序 桶排序 计数排序基数排序 桶排序(Bucket sort) 时间复杂度O(n) 苛刻数据...桶内排完序之后,再把每个桶里数据按照顺序依次取出, 组成序列就是有序了。 时间复杂度O(n) n个数据分到 m 个桶内,每个桶里就有 k=n/m 个元素。...每个桶内部使用快速排序,时间复杂度O(k * logk) m 个桶排序时间复杂度就是 O(m * k * logk) 当桶个数 m 接近数据个数 n 时,log(n/m) 就是一个非常小常量,...这个时候桶排序时间复杂度接近 O(n) 苛刻数据 排序数据需要很容易就能划分成 m 个桶 每个桶内数据都排序完之后,桶与桶之间数据不需要再进行排序。...按照每位来排序排序算法要是稳定 如果 不稳定会打乱顺序 之前工作就无效了 时间复杂度 O(k*n) K为数据位数 我们可以把所有的单词补齐到相同长度,位数不够可以在后面补“0”,因为根据ASCII

    1.8K10

    如何将递归算法复杂度优化到O(1)

    笔者在不断地学习和思考过程中,发现了这类经典模型竟然有如此多有意思求解算法,能让这个经典问题时间复杂度降低到 \(O(1)\) ,下面我想对这个经典问题求解做一个较为深入剖析,请听我娓娓道来。...递归在数学与计算机科学中,指在函数定义中使用函数自身方法,可能有些人会把递归和循环弄混淆,我觉得务必要把这一点区分清楚才行。...如此高时间复杂度,我们定然不会满意,该算法有巨大改进空间。我们是否可以在某种意义下对这个递归过程进行改进,来优化这个时间复杂度。...还是从上面这个开门例子来讲,我们经历了顺路打开门和原路返回数门这两个过程,我们是不是可以考虑在边开门过程中边数我们一路开门数量呢?这对时间代价上会带来极大改进,那我们想想看该怎么办呢?...利用这个递归公式,我们计算斐波那契数列复杂度也为 \(O(log(n))\),并且实现起来比矩阵方法简单一些: 时间复杂度:\(O(log(n))\) 空间复杂度:\(O(1)\) int

    1.4K10

    O(1)时间检测2幂次除以2统计1位数nn-1取且

    O(1) 时间检测整数 n 是否 2 幂次。 样例 n=4,返回 true; n=5,返回 false. 除以2 这个当然很简单也最容易想到,int的话可能要除31次才能出来。...统计1位数 这个也容易想到,如果2幂次的话肯定是正,然后去统计1个数,需要移位和取且操作,和上面的方法差不多。因为除2本来就可以通过移位操作完成。...// write your code here } nn-1取且 这个是以前检测有多少个1时候用到一种方法,那个时候有一个结论:n&n-1可以减少一位1,如果用这种方法,那代码相当简单:...也符合时间复杂度要求。...n位有符号数表示范围: -2^n-- 2^(n-1)-1 原码表示:     左边符号位,正数为0,负数为1

    59330
    领券