首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

三重损失tensorflow,其中锚-正对是预先定义的

三重损失(Triplet Loss)是一种用于训练神经网络的损失函数,主要用于学习特征表示。它在人脸识别、图像检索等领域有广泛的应用。

三重损失的思想是通过最小化锚样本与正样本之间的距离,同时最大化锚样本与负样本之间的距离,来使得同一类别的样本在特征空间中更加接近,不同类别的样本则更加分散。具体而言,三重损失由三个部分组成:锚样本(Anchor)、正样本(Positive)和负样本(Negative)。锚样本和正样本来自同一类别,而负样本则来自不同类别。

三重损失的优势在于能够学习到具有较好区分度的特征表示,从而提高模型的分类性能。它可以通过度量学习的方式,将样本映射到一个低维的特征空间,使得同一类别的样本更加接近,不同类别的样本更加分散。

三重损失在人脸识别领域有广泛的应用。通过学习到的特征表示,可以实现人脸的比对、识别和验证等任务。此外,三重损失还可以应用于图像检索、目标跟踪等领域,用于学习图像之间的相似度。

腾讯云提供了一系列与人工智能相关的产品,可以用于支持三重损失的实现和应用。其中,腾讯云人脸识别(Face Recognition)服务可以用于人脸的比对和识别任务。您可以通过以下链接了解更多关于腾讯云人脸识别服务的信息:腾讯云人脸识别

请注意,本回答中没有提及亚马逊AWS、Azure、阿里云、华为云、天翼云、GoDaddy、Namecheap、Google等流行的云计算品牌商。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • AAAI'22 | "简单"的无监督图表示学习

    今天给大家介绍的是电子科技大学石小爽教授团队于2022年发表在AAAI上的一篇论文:“Simple Unsupervised Graph Representation Learning ”。作者提出了一种简单的无监督图表示学习方法来进行有效和高效的对比学习。具体而言,通过构造多重损失探索结构信息与邻域信息之间的互补信息来扩大类间变化,并通过增加一个上限损失来实现正嵌入与锚嵌入之间的有限距离来减小类内变化。因此,无论是扩大类间变异还是减少类内变异,都能使泛化误差很小,从而得到一个有效的模型。此外,作者的方法消除了以往图对比学习方法中广泛使用的数据增强和鉴别器,同时可以输出低维嵌入,从而得到一个高效的模型。在各种真实数据集上的实验结果表明,与最先进的方法相比,该方法是有效和高效的。

    01

    使用三重损失和孪生神经网络训练大型类目的嵌入表示

    来源:Deephub Imba本文约4500字,建议阅读5分钟本文描述了一种通过在网站内部的用户搜索数据上使用自监督学习技术来训练高质量的可推广嵌入的方法。 大型网站类目目录的数量很大,一般都无法进行手动标记,所以理解大型目录的内容对在线业务来说是一个重大挑战,并且这使得对于新产品发现就变得非常困难,但这个问题可以通过使用自监督神经网络模型来解决。 在过去我们一直使用人工在系统中进行产品的标记,这样的确可以解决问题但是却耗费了很多人力的成本。如果能够创建一种机器学习为基础的通用的方式,在语义上自动的关联产品

    03

    【翻译】HyNet: Learning Local Descriptor with Hybrid Similarity Measure and Triplet Loss

    最近的研究表明,局部描述符学习得益于L2归一化的使用,然而,文献中缺乏对这种效应的深入分析。在本文中,我们研究了L2归一化如何影响训练期间的反向传播描述符梯度。根据我们的观察,我们提出了一个新的局部描述符HyNet,它可以在匹配方面带来最先进的结果。HyNet引入了一种混合相似性度量,用于度量三态边际损失,一个正则化项约束描述符范数,以及一种新的网络体系结构,该体系结构对所有中间特征映射和输出描述符执行L2正则化。在包括补丁匹配、验证和检索在内的标准基准上,HyNet大大超过了以前的方法,并且在3D重建任务上优于完整的端到端方法。代码和模型可在https://github.com/yuruntian/HyNet上找到。

    02

    Feature Selective Anchor-Free Module for Single-Shot Object Detection(文献阅读)

    目标的多尺度变化在目标检测中是一个很重要的问题,利用特征层多尺度(或anchor多尺度)是一种有效的解决方案。Anchor box用于将所有可能的Instance box离散为有限数量的具有预先定义的位置、尺度和纵横比的box。Instance box和Anchor box基于IOU重叠率来匹配。当这种方法集成到特征金字塔的时候,大的anchor通常和上部的特征相映射,小的anchor通常和下部的特征相映射,如下图所示。这是基于启发式的,即上层特征图有更多的语义信息适合于检测大的目标,而下层特征图有更多的细粒度细节适合于检测小目标。然而,这种设计有两个局限性:1)启发式引导的特征选择;2)基于覆盖锚取样。在训练过程中,每个实例总是根据IoU重叠匹配到最近的锚盒。而锚框则通过人类定义的规则(如框的大小)与特定级别的功能映射相关联。因此,为每个实例选择的特性级别完全基于自组织启发式。例如,一个汽车实例大小50×50像素和另一个类似的汽车实例规模60×60像素可能分配到两个不同的特征层,而另一个40×40像素大小的实例可能被分配到和50x50相同的特征层,如下图所示。

    02

    Unbiased Teacher v2: Semi-supervised Object Detection for Anchor-free and Anchor-based Detectors

    随着最近半监督目标检测(SS-OD)技术的发展,目标检测器可以通过使用有限的标记数据和丰富的未标记数据来改进。然而,仍有两个挑战没有解决:(1)在无锚检测器上没有先期的SS-OD工作,(2)在伪标签边界框回归时,先期工作是无效的。在本文中,我们提出了Unbiased Teacher v2,它显示了SS-OD方法在无锚检测器上的通用性,同时也为无监督回归损失引入了Listen2Student机制。特别是,我们首先提出了一项研究,检查现有的SS-OD方法在无锚检测器上的有效性,发现它们在半监督环境下取得的性能改进要低得多。我们还观察到,在半监督环境下,无锚检测器中使用的带 centerness 的框选择和基于定位的标签不能很好地工作。另一方面,我们的Listen2Student机制明确地防止在训练边界框回归时出现误导性的伪标签。边界框回归的训练中明确防止误导性的伪标签;我们特别开发了一种新的伪标签选择机制,该机制基于教师和学生的相对不确定性。和学生的相对不确定性为基础的新型伪标签选择机制。这一想法有助于在半监督环境下对回归分支进行了有利的改进。我们的方法,既适用于我们的方法适用于无锚和基于锚的方法,在VOC、 COCO-standard和COCO-additional中一直优于最先进的方法。

    02

    Single-Shot Refinement Neural Network for Object Detection

    对于目标检测,两阶段方法(如Faster R-CNN)的准确率最高,而单阶段方法(如SSD)的效率较高。为了在继承两种方法优点的同时克服它们的缺点,本文提出了一种新的单阶段检测器,称为RefineDet,它比两阶段方法具有更好的精度,并保持了与单阶段方法相当的效率。RefineDet由两个相互连接的模块组成,即锚点细化模块和目标检测模块。具体来说,前者的目的是(1)过滤掉负锚点,减少分类器的搜索空间,(2)粗调锚点的位置和大小,为后续回归器提供更好的初始化。后一个模块以改进后的锚为输入,进一步改进回归,预测多类标签。同时,我们设计了一个传输连接块来传输锚点细化模块中的特征,以预测目标检测模块中目标的位置、大小和类标签。多任务丢失功能使我们能够以端到端方式训练整个网络。在PASCAL VOC 2007、PASCAL VOC 2012和MS COCO上的大量实验表明,RefineDet能够以高效的方式实现最先进的检测精度。

    01
    领券