那么如果设置了 -yjm 1024 ,JobManager的JVM的堆内存大小是多少呢?
本文参考Flink1.10官方多篇文章相关知识收集、翻译、整合和内化而写成的关于Flink内存模型详解的文章,其中Job Manager、Task Manager和Client 分别是什么,各自之间的运行关系怎样,任务运行过程中所使用任务槽和资源情况的内存模型构成详解,内存设置需要配置哪些参数,参数功能描述等。暂时不熟悉Flink相关概念的童鞋自觉查阅笔者以往分享关于Flink术语基本概念的文章链接:Flink优化器与源码解析系列--Flink相关基本概念。
Apache Flink 基于 JVM 的高效处理能力,依赖于其对各组件内存用量的细致掌控。 考虑到用户在 Flink 上运行的应用的多样性,尽管社区已经努力为所有配置项提供合理的默认值,仍无法满足所有情况下的需求。 为了给用户生产提供最大化的价值, Flink 允许用户在整体上以及细粒度上对集群的内存分配进行调整。
Apache Flink通过严格控制其各种组件的内存使用,在JVM之上提供高效的工作负载。
前文我们没有提到,如何限制元空间的大小,其实就是限制 commit 的内存大小。元空间的限制不只是受限于我们的参数配置,并且前面我们提到了,元空间的内存回收也比较特殊,元空间的内存基本都是每个类加载器的 ClassLoaderData 申请并管理的,在类加载器被 GC 回收后,ClassLoaderData 管理的这些元空间也会被回收掉。所以,GC 是可能触发一部分元空间被回收了。所以元空间在设计的时候,还有一个动态限制 _capacity_until_GC,即触发 GC 的元空间占用大小。当要分配的空间导致元空间整体占用超过这个限制的时候,尝试触发 GC。这个动态限制也会在每次 GC 的时候动态扩大或者缩小。动态扩大以及缩小
java 程序是运行在jvm 虚拟机里面的,离开jvm虚拟机,那么java程序无法直接在linux平台的运行。 所以java应用程序和os 平台之间是隔着jvm虚拟机的。 所谓的jvm虚拟机,本质上就是一个进程,此时它的内存模型和普通的进程有相同之处,但它又是java程序的管理者,所以它又有自己独特的内存模型. 从os层面来看jvm的进程,其内存模型包含如下几个部分: 内核内存 + jvm的code + jvm的data + jvm的 heap + jvm的stack + unused memory. 其中的heap, stack 就是我们常说的“堆栈” 空间. 我们更多需要从jvm作为java程序管理者的角度来看其内存模型: 此时jvm的内存空间可以分为两大类,分别是 “堆内存” 以及“非堆内存”,其中前者是可以分配给java程序使用的,而后者则是jvm进程自己使用的。 所以“堆内存”是我们要讨论的重点:
不同的 GC 堆大小动态伸缩有很大很大的差异(比如 ParallelGC 涉及 UseAdaptiveSizePolicy 启用的动态堆大小策略以及相关的 UsePSAdaptiveSurvivorSizePolicy、UseAdaptiveGenerationSizePolicyAtMinorCollection 等等等等的参数参与决定计算最新堆大小的方式以及时机),在这个系列以后的章节我们详细分析每个 GC 的时候再详细分析这些不同 GC 的动态伸缩策略。我们这里仅涉及大多数 GC 通用的堆大小伸缩涉及的参数:MinHeapFreeRatio 与 MaxHeapFreeRatio:
不同的 GC 情况下,初始化以及扩展的流程可能在某些细节不太一样,但是,大体的思路都是:
JVM 调优是一个很大的话题,在回答“如何进行 JVM 调优?”之前,首先我们要回答一个更为关键的问题,那就是,我们为什么要进行 JVM 调优?
前面提到了虚拟内存需要映射物理内存才能使用,这个映射关系被保存在内存中的页表(Page Table)。现代 CPU 架构中一般有 TLB (Translation Lookaside Buffer,翻译后备缓冲,也称为页表寄存器缓冲)存在,在里面保存了经常使用的页表映射项。TLB 的大小有限,一般 TLB 如果只能容纳小于 100 个页表映射项。 我们能让程序的虚拟内存对应的页表映射项都处于 TLB 中,那么能大大提升程序性能,这就要尽量减少页表映射项的个数:页表项个数 = 程序所需内存大小 / 页大小。我们要么缩小程序所需内存,要么增大页大小。我们一般会考虑增加页大小,这就大页分配的由来,JVM 对于堆内存分配也支持大页分配,用于优化大堆内存的分配。那么 Linux 环境中有哪些大页分配的方式呢?
我们过一下元空间内存分配流程,我们会忽略一些 GC 相关的还有并发安全的细节,否则涉及的概念太多,一下说不过来,这些细节,会在以后的系列中详细提到。
概述:命令jmap是一个多功能的命令。它可以生成 java 程序的 dump 文件, 也可以查看堆内对象示例的统计信息、查看 ClassLoader 的信息以及 finalizer 队列。
我们前面介绍了元空间的组成元素,但是没有将他们完整的串联起来,我们这里举一个简单的例子,将之前的所有元素串联起来。
Java虚拟机(JVM)是Java应用的运行环境,从一般意义上来讲,JVM是通过规范来定义的一个虚拟的计算机,被设计用来解释执行从Java源码编译而来的字节码。更通俗地说,JVM是指对这个规范的具体实现。这种实现基于严格的指令集和全面的内存模型。另外,JVM也通常被形容为对软件运行时环境的实现。通常JVM实现主要指的是HotSpot。
非标准参数表示不保证所有JVM实现都支持这些参数,在将来的JVM版本中可能会发生改变。非标准参数统一以 -X 开头,如 -Xmx20M 设置最大java堆大小,示例:
JVM中, 所有对象都是在堆中分配内存空间的,栈只用于保存局部变量和临时变量,如果是对象,只保存引用,实际内存还是在堆中;一个java对象占用的内存空间,除了一个固定大小的空间用于描述这个对象属于哪个类,其它的就用于保存它的字段的值;默认的java虚拟机的大小比较小,在对大数据进行处理时java就会报错:java.lang.OutOfMemoryError。设置jvm内存的方法,对于单独的.class,可以用下面的方法对Test运行时的jvm内存进行设置。
Tomcat本身不能直接在计算机上运行,需要依赖于硬件基础之上的操作系统和一个Java虚拟机。Tomcat的内存溢出本质就是JVM内存溢出,所以在本文开始时,应该先对Java JVM有关内存方面的知识进行详细介绍。
Tomcat本身不能直接在计算机上运行,需要依赖于操作系统和一个Java虚拟机。JAVA程序启动时JVM会分配一个初始内存和最大内存给APP。当APP需要的内存超出内存的最大值时虚拟机就会提示内存溢出,并且导致应用服务崩溃。
在上面提到的 TLAB 大小设计的时候,我们经常提到期望。这个期望是根据历史数据计算得出的,也就是每次输入采样值,根据历史采样值得出最新的期望值。不仅 TLAB 用到了这种期望计算,GC 和 JIT 等等 JVM 机制中都用到了。这里我们来看一种 TLAB 中经常用到的 EMA(Exponential Moving Average 指数平均数) 算法:
王子在之前的JVM文章中已经大体上把一些原理性问题说清楚了,今天主要是介绍一些实际进行JVM调优工作的工具和命令,不会深入讲解,因为网上资料很多,篇幅可能不长,但都是实用的内容,小伙伴们有不清楚的可以自行查找资料。
Linux 内存管理模型不是咱们这个系列的讨论重点,我们这里只会简单提一些对于咱们这个系列需要了解到的,如果读者想要深入理解,建议大家查看 bin 神(公众号:bin 的技术小屋)的系列文章:一步一图带你深入理解 Linux 虚拟内存管理
在基于物理的服务器(此处主要与容器平台进行区分,故此描述)上运行Java应用程序时,我们通常会使用Java虚拟机参数"-Xms、-Xmx"来指定Java堆内存的初始值和最大值。如果要将我们的应用程序移植到容器平台,如何在容器环境中配置Java堆内存大小呢?有没有最佳做法?在本文中,我们将讨论可用于指定Java堆内存大小的JVM参数以及最优选择。
打开 IDEA 安装目录,看到有一个 bin 目录,其中有两个 vmoptions 文件,需针对不同的JDK进行配置:
Java是以VM为基础的,而云原生讲究的就是Native,天然的矛盾,虽然Quarkus是为GraalVM和HotSpot量身定制的K8s Native Java框架,生态原因切换成本太高,这种矛盾体现在很多方面,比如:当你在物理机或者虚拟机上配置 JVM 参数时,你可以选择使用-Xmx/-Xms 来指定 Java 堆大小,但这样指定的话,就固定了 JVM 堆占用大小,如果将 Java 应用程序移植到容器或者说 K8s Pod 中,K8S 本身有垂直扩容的能力,如果我把内存从 8G 增长到 16G,JVM 如何感知到呢?我们又该如何配置 Java 堆大小呢?本文我们讨论下如何在 Java 容器中参数配置的最佳实践。
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该
在上一篇博文:【JAVA】JVM 内存区域的划分 中介绍了 JVM 内存区域的划分,总结了相关的一些概念,本博文将结合 JVM 参数、工具等方面,进一步分析 JVM 内存结构,包括外部资料相对较少的堆外部分。
可以利用当前流行的监控工具,如Prometheus和Grafana,以及JDK自带的命令行工具,例如jps、jstat、jinfo、jstack等,来分析JVM的运行状态。
总的来说就是依照这些原则来解决这些问题以达到 GC 低频 GC 停顿时间短,以及低内存占用和高吞吐。
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。
随着企业越来越多地了解到部署容器化应用程序的优点,有必要纠正 JVM 在云中表现不好的误解,尤其是在内存管理方面。虽然许多JVM可能不能完美地配置成在弹性云环境中运行,但各种可用的系统属性允许对JVM进行调优,以帮助最大限度地利用其主机环境。如果一个容器化的应用程序是使用OpenShift部署的,那么该应用程序可以利用Kubernetes Vertical Pod Autoscaler (VPA),这是一个alpha特性。VPA就是一个例子,JVM的默认内存管理设置可能会降低在云中运行应用程序的好处。这篇博文将介绍配置和测试一个与VPA一起使用的容器化Java应用程序的步骤,这将演示JVM在云中运行时的适应性。
在开发spring cloud过程中一个很严重的资源问题就是内存占用过高,而实际上本机开发测试并没有很大的请求量,所以这是对电脑资源的一种严重的浪费,甚至导致IDE卡死、崩溃。
JVM本质就是一个进程,因此其内存空间(也称之为运行时数据区,注意与JMM的区别)也有进程的一般特点。深入浅出 Java 中 JVM 内存管理,这篇参考下。
在jvm中有很多的参数可以进行设置,这样可以让jvm在各种环境中都能够高效的运行。绝大部分的参数保持默认即可。
作为一名工程师,项目调优这事,是必须得熟练掌握的事情。在Spring Boot项目中,调优主要通过配置文件和配置JVM的参数的方式进行。
如果想分析自己的JAVA Application时,可以使用jmap程序来生成heapdump文例: jmap -heap pid jmap是JDK自带的一个工具,非常小巧方便,其支持参数如下: -heap:打印heap空间的概要,这里可以粗略的检验heap空间的使用情况。 官网对jmap的解释是: DESCRIPTION
主要保证 GC 的时候扫描高效。由于 TLAB 仅线程内知道哪些被分配了,在 GC 扫描发生时返回 Eden 区,如果不填充的话,外部并不知道哪一部分被使用哪一部分没有,需要做额外的检查,如果填充已经确认会被回收的对象,也就是 dummy object, GC 会直接标记之后跳过这块内存,增加扫描效率。反正这块内存已经属于 TLAB,其他线程在下次扫描结束前是无法使用的。这个 dummy object 就是 int 数组。为了一定能有填充 dummy object 的空间,一般 TLAB 大小都会预留一个 dummy object 的 header 的空间,也是一个 int[] 的 header,所以 TLAB 的大小不能超过int 数组的最大大小,否则无法用 dummy object 填满未使用的空间。
公司众多系统中有一个系统使用的是 CMS 垃圾回收器,JVM 初始堆内存不等于最大堆内存,但通过监控信息发现:在经过一次 FullGC 之后,服务器物理内存剩余空间并未提升,运维同事告诉我说,有内存泄露,因为 GC 了之后,内存并没有被释放。按照大部分人的理解,FullGC 之后 JVM 进程会释放的内存一部分还给物理内存,下面通过几个实验来对比验证一下 CMS 和 G1 的物理内存归还机制。
作为一名工程师,项目调优这事,是必须得熟练掌握的事情。在 SpringBoot 项目中,调优主要通过配置文件和配置 JVM 的参数的方式进行。
引言 在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约600m,Linux自身使用大约800m。从表面上,物理内存
关于这些设置的JVM参数是什么意思,请参考第二步中的oracle官方给出的调优文档。
JVM 直接内存(Direct Memory)是 JVM 运行时使用的一种特殊内存区域,它是 JVM 堆外的一块内存空间。在 Java 中,我们使用java.nio 包和java.lang.System类中的arraycopy()方法等来操作直接内存。
先来看一下官网上对flink内存设置的介绍。Flink JVM 进程的进程总内存(Total Process Memory)包含了由 Flink 应用使用的内存(Flink 总内存)以及由运行 Flink 的 JVM 使用的内存。Flink 总内存(Total Flink Memory)包括 JVM 堆内存(Heap Memory)和堆外内存(Off-Heap Memory)。其中堆外内存包括直接内存(Direct Memory)和本地内存(Native Memory)。
如果你用的是IDEA等开发工具,来启动运行项目,那么要调试JDK就方便太多了。另外,IDEA 系列教程全部整理好了,微信搜索Java技术栈,在后台发送:IDEA,可以在线阅读。
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该是足够使用的;但实际运行的情况是,会发生大量使用SWAP(说明物理内存不够使用 了),如下图所示。同时,由于SWAP和GC同时发生会致使JVM严重卡顿,所以我们要追问:内存究竟去哪儿了要分析这个问题,理解JVM和操作系统之间的内存关系非常重要。接下来主要就Linux与JVM之间的内存关系进行一些分析。 一、Li
Java 19 中 Loom 终于 Preview 了,虚拟线程(VirtualThread)是我期待已久的特性,但是这里我们说的线程内存,并不是这种 虚拟线程,还是老的线程。其实新的虚拟线程,在线程内存结构上并没有啥变化,只是存储位置的变化,实际的负载线程(CarrierThread)还是老的线程。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
在一些物理内存为8g的服务器上,主要运行一个Java服务,系统内存分配如下:Java服务的JVM堆大小设置为6g,一个监控进程占用大约 600m,Linux自身使用大约800m。从表面上,物理内存应该是足够使用的;但实际运行的情况是,会发生大量使用SWAP(说明物理内存不够使用 了),如下图所示。由于SWAP和GC同时发生会致使JVM严重卡顿,所以我们要追问:内存究竟去哪儿了?
领取专属 10元无门槛券
手把手带您无忧上云