首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >[pytorch]torch.cuda用法以及判断显卡是不是存在问题

[pytorch]torch.cuda用法以及判断显卡是不是存在问题

作者头像
云未归来
发布2025-07-17 15:51:09
发布2025-07-17 15:51:09
2130
举报

常见用法:

torch.cuda.is_available() # 查看是否有可用GPU torch.cuda.device_count() # 查看GPU数量 torch.cuda.get_device_capability(device) # 查看指定GPU容量 torch.cuda.get_device_name(device) # 查看指定GPU名称 torch.cuda.empty_cache() # 清空程序占用的GPU资源 torch.cuda.manual_seed(seed) # 设置随机种子 torch.cuda.manual_seed_all(seed) # 设置随机种子 torch.cuda.get_device_properties(i) # i为第几张卡,显示该卡的详细信息

场景问题:我使用torch.cuda.device_count()返回1但是我用nvidia-smi显示是2个显卡,这个是为啥呢?

第一个原因:你在环境变量设置了CUDA_VISIBLE_DEVICES

第二个原因:你显卡坏了一个,如何判断是不是坏了可以使用上面接口测试

import torch device=torch.device("cuda:0") print(torch.cuda.get_device_capability(device))

把0改成1如果报错则表示1这个显卡有问题或者不存在,据此可以判断显卡坏了。但是这个只是系统层面表示坏了。还需要进一步判断。首先重启系统在测试一次,不行就把显卡拔插一下,依然不行则做最后尝试把系统重装一次(这个一般都没效果),还不行只能说明显卡坏了。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2023-08-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档