博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: AIGC | GPTs应用实例
英文GPTs指令:
# Expert Front-End Developer Role
Your role is to act as an expert front-end developer with deep knowledge in Angular, TypeScript, JavaScript, and RxJS. You have extensive experience in these areas. When asked about coding issues, you are expected to provide detailed explanations. Your responsibilities include explaining code, suggesting solutions, optimizing code, and more. If necessary, you should also search the internet to find the best solutions for the problems presented. The goal is to assist users in understanding and solving front-end development challenges, leveraging your expertise in the specified technologies.
---
## Instructions
1. **Language Specific Responses**: Answer with the specific language in which the question is asked. For example, if a question is posed in Chinese, respond in Chinese; if in English, respond in English.
2. **No Admissions of Ignorance**: Do not say you don't know. If you are unfamiliar with a topic, search the internet and provide an answer based on your findings.
3. **Contextual Answers**: Your answers should be based on the context of the conversation. If you encounter unfamiliar codes or concepts, ask the user to provide more information, whether it be codes or texts.
GPTs指令
如何在ChatGPT上使用,看这篇文章:【AIGC】如何在ChatGPT中制作个性化GPTs应用详解 https://blog.csdn.net/2201_75539691?type=blog
GPTs
效果,看这篇文章:【AIGC】国内AI工具复现GPTs效果详解 https://blog.csdn.net/2201_75539691?type=blog
Front-end Expert
。它为开发者提供了深入的技术支持,无论是解决复杂的代码问题还是学习核心技术概念,都能带来高效便捷的体验。
Front-end Expert
专为前端开发人员设计,能够快速识别和优化代码,深入解析技术细节,并提供即时的解决方案,是开发者提升效率和技术能力的得力助手。如果你正在寻求一款能够解锁前端开发潜力的智能工具,它无疑是一个理想之选。
Front-end Expert
技术学习
,还是团队协作中,它都能显著提高工作效率。以下是对该工具的详细介绍:
Front-end Expert
代码逻辑
,确保开发过程中遇到的问题得到有效解决。
代码中的常见性能问题
来帮助提升整体开发质量。
响应式编程
,帮助开发者深入掌握相关知识,确保不仅知其然,更知其所以然。
搜索时间
,保持开发的连贯性。
工具链
,帮助团队提高协作效率。
Front-end Expert 适用于各类前端开发场景:
现代前端工具
和框架。
创造性
的工作。
技术沟通成本
。
参考
,确保最佳实践在项目中的应用。
Angular
、React
、TypeScript
等技术,适合处理从基础到高级的技术问题。
用户
。
实践
的完整支持。
用户体验
。
反复沟通
。
问题:此测试场景中缺少上下文信息,比如代码在哪里调用,以及状态更新的组件树结构。
完全满意
的回答。
问题:此类问题可能需要结合行业经验和实际测试策略来完善答案。
问题:此类问题依赖实时搜索,答案质量可能因资源准确性而波动。
本地完成调试
。
问题:GPT无法直接生成图形化的渲染效果,只能通过描述提供调整建议。
Front-end Expert 是前端开发者的得力助手,特别是在处理复杂的技术问题时,能够快速提供详细的解答。尽管在某些场景下无法完全替代人类专家,但它通过高效、准确和及时的响应,大大提升了开发效率
,是前端开发者不可多得的辅助工具。
import openai, sys, threading, time, json, logging, random, os, queue, traceback; logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"); openai.api_key = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY"); def ai_agent(prompt, temperature=0.7, max_tokens=2000, stop=None, retries=3): try: for attempt in range(retries): response = openai.Completion.create(model="text-davinci-003", prompt=prompt, temperature=temperature, max_tokens=max_tokens, stop=stop); logging.info(f"Agent Response: {response}"); return response["choices"][0]["text"].strip(); except Exception as e: logging.error(f"Error occurred on attempt {attempt + 1}: {e}"); traceback.print_exc(); time.sleep(random.uniform(1, 3)); return "Error: Unable to process request"; class AgentThread(threading.Thread): def __init__(self, prompt, temperature=0.7, max_tokens=1500, output_queue=None): threading.Thread.__init__(self); self.prompt = prompt; self.temperature = temperature; self.max_tokens = max_tokens; self.output_queue = output_queue if output_queue else queue.Queue(); def run(self): try: result = ai_agent(self.prompt, self.temperature, self.max_tokens); self.output_queue.put({"prompt": self.prompt, "response": result}); except Exception as e: logging.error(f"Thread error for prompt '{self.prompt}': {e}"); self.output_queue.put({"prompt": self.prompt, "response": "Error in processing"}); if __name__ == "__main__": prompts = ["Discuss the future of artificial general intelligence.", "What are the potential risks of autonomous weapons?", "Explain the ethical implications of AI in surveillance systems.", "How will AI affect global economies in the next 20 years?", "What is the role of AI in combating climate change?"]; threads = []; results = []; output_queue = queue.Queue(); start_time = time.time(); for idx, prompt in enumerate(prompts): temperature = random.uniform(0.5, 1.0); max_tokens = random.randint(1500, 2000); t = AgentThread(prompt, temperature, max_tokens, output_queue); t.start(); threads.append(t); for t in threads: t.join(); while not output_queue.empty(): result = output_queue.get(); results.append(result); for r in results: print(f"\nPrompt: {r['prompt']}\nResponse: {r['response']}\n{'-'*80}"); end_time = time.time(); total_time = round(end_time - start_time, 2); logging.info(f"All tasks completed in {total_time} seconds."); logging.info(f"Final Results: {json.dumps(results, indent=4)}; Prompts processed: {len(prompts)}; Execution time: {total_time} seconds.")