前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >【可视化大屏】用Python开发「淄博烧烤」微博热评舆情分析大屏

【可视化大屏】用Python开发「淄博烧烤」微博热评舆情分析大屏

作者头像
无双0516
发布2025-03-19 12:10:48
发布2025-03-19 12:10:48
10000
代码可运行
举报
运行总次数:0
代码可运行

一、开发背景

自从2023.3月以来,"淄博烧烤"现象持续占领热搜流量,体现了后疫情时代众多网友对人间烟火气的美好向往,本现象级事件存在一定的数据分析实践意义。

静态截图:
大屏截图
大屏截图

动态演示效果也有。

二、爬虫代码

2.1 爬微博列表

通过m端的搜索页面,爬取以"淄博烧烤"为关键词的微博id,获取到微博id的目的,是传给评论爬虫。

发送请求部分:

代码语言:python
代码运行次数:0
运行
复制
# 请求地址
url = 'https://m.weibo.cn/api/container/getIndex'
# 请求参数
params = {
    "containerid": "100103type=60&q={}".format(v_keyword),
    "page_type": "searchall",
    "page": page
}
# 发送请求
r = requests.get(url, headers=headers, params=params)
注意,type=60代表"热门",如下:
m端微博
m端微博

解析数据部分:

代码语言:python
代码运行次数:0
运行
复制
# 解析json数据
cards = r.json()["data"]["cards"]
print('微博数量:', len(cards))
for card in cards:
    # 微博id
    id_list = card['mblog']['id']
    id_list_list.append(id_list)

至此,已经获取到以「淄博烧烤」为关键词的微博id列表 id_list_list 了。

2.2 爬微博评论

从2.1章节获取到微博id列表之后,传入爬取微博评论函数 get_comments

这部分爬虫讲解可移步,原文有。

最终,爬取到的微博评论数据,示例如下:
淄博烧烤-微博评论
淄博烧烤-微博评论

说明:无论微博搜索页,还是微博评论页,都可以自定义设置max_page,满足自己的个性化数据量要求。

2.3 导入MySQL数据库

最核心的三行代码:

代码语言:python
代码运行次数:0
运行
复制
# 读取csv数据
df = pd.read_csv('去重后_' + comment_file)
# 把csv数据导入MySQL数据库
df.to_sql(name='t_zbsk', con=engine, chunksize=1000, if_exists='replace', index=False)
print('导入数据库完成!')

用create_engine创建数据库连接,格式为:

create_engine('数据库类型+数据库驱动://用户名:密码@数据库IP地址/数据库名称')

这样,数据库连接就创建好了。

然后,用pandas的read_csv函数读取csv文件。

最后,用pandas的to_sql函数,把数据存入MySQL数据库:

  • name='college_t2' #mysql数据库中的表名
  • con=engine # 数据库连接
  • index=False #不包含索引字段
  • if_exists='replace' #如果表中存在数据,就替换掉

非常方便地完成了反向导入,即:从csv向数据库的导入。

这个部分的讲解视频:原文有。

三、可视化代码

3.1 大标题

由于pyecharts组件没有专门用作标题的图表,我决定灵活运用Line组件实现大标题。

首先,找到一张星空图作为大屏背景图:
大屏背景图
大屏背景图

然后,在Line组件中加入js代码,加载背景图:

代码语言:python
代码运行次数:0
运行
复制
# 设置背景图片
line3.add_js_funcs(
    """
    var img = new Image(); img.src = './static/bg2.png';
    """
)
大标题效果如下:
最上方的大标题
最上方的大标题

3.2 词云图(含:加载停用词)

绘制词云图,需要先进行中文分词。既然分词,就要先设置停用词,避免干扰词影响分析结果。

这里采用哈工大停用词作为停用词词典。

代码语言:python
代码运行次数:0
运行
复制
# 停用词列表
with open('hit_stopwords.txt', 'r') as f:
    stopwords_list = f.readlines()
stopwords_list = [i.strip() for i in stopwords_list]

这样,所有停用词就存入stopwords_list这个列表里了。

如果哈工大停用词仍然无法满足需求,再加入一些自定义停用词,extend到这个列表里:

代码语言:python
代码运行次数:0
运行
复制
# 加入自定义停用词
stopwords_list.extend(
    ['3', '5', '不', '都', '好', '人', '吃', '都', '去', '想', '说', '还', '很', '…', 'nan', '真的', '不是',
     '没', '会', '看', '现在', '觉得', ' ', '没有', '上', '感觉', '大', '太', '真', '哈哈哈', '火', '挖', '做',
     '一下', '不能', '知道', '这种', '快'])

现在就可以愉快的绘制词云图了,部分核心代码:

代码语言:python
代码运行次数:0
运行
复制
wc = WordCloud(init_opts=opts.InitOpts(width='600px', height=chart_height, theme=theme_config, chart_id='wc1'))
wc.add(series_name="评论内容",
       data_pair=data300,
       word_gap=1,
       word_size_range=[20, 70],
       )  # 增加数据
wc.set_global_opts(
    title_opts=opts.TitleOpts(pos_left='center',
                              pos_top='0%',
                              title=v_title,
                              title_textstyle_opts=opts.TextStyleOpts(font_size=20, color=title_color)  # 设置标题
                              ),
    tooltip_opts=opts.TooltipOpts(is_show=True),  # 显示提示
)
词云图效果:
评论内容-词云图
评论内容-词云图

3.3 玫瑰图(含:snownlp情感分析)

先对评论数据进行情感判定,采用snownlp技术进行情感打分及判定结果:

代码语言:python
代码运行次数:0
运行
复制
for comment in cmt_list:
    sentiments_score = SnowNLP(comment).sentiments
    if 0 <= sentiments_score < 0.2:  # 情感分小于0.2,判定为极其消极
        tag = '极其消极'
        neg_very_count += 1
    elif 0.2 <= sentiments_score < 0.4:  # 情感分在0.2和0.4之间,判定为比较消极
        tag = '比较消极'
        neg_count += 1
    elif 0.4 <= sentiments_score < 0.6:  # 情感分在0.4和0.6之间,判定为中性
        tag = '中性'
        mid_count += 1
    elif 0.6 <= sentiments_score < 0.9:  # 情感分在0.6和0.9之间,判定为比较积极
        tag = '比较积极'
        pos_count += 1
    else:  # 情感分大于0.9,判定为极其积极
        tag = '极其积极'
        pos_very_count += 1
将情感分析结果用pandas保存到一个Excel文件里,如下:
情感判定结果
情感判定结果

绘制玫瑰图,部分核心代码:

代码语言:python
代码运行次数:0
运行
复制
# 画饼图
pie = (
    Pie(init_opts=opts.InitOpts(theme=theme_config, width=chart_width, height=chart_height, chart_id='pie1'))
    .add(series_name="情感分类",  # 系列名称
         data_pair=[  # 添加数据
             ['极其积极', pos_very_count],
             ['比较积极', pos_count],
             ['中性', mid_count],
             ['比较消极', neg_count],
             ['极其消极', neg_very_count],
         ],
         rosetype="radius",  # 是否展示成南丁格尔图
         radius=["20%", "65%"],  # 扇区圆心角展现数据的百分比
         )  # 加入数据
    .set_global_opts(  # 全局设置项
        title_opts=opts.TitleOpts(title=v_title,
                                  pos_left='center',
                                  title_textstyle_opts=opts.TextStyleOpts(color=title_color, ), ),  # 标题
        legend_opts=opts.LegendOpts(pos_left='center', pos_top='8%', orient='horizontal',
                                    textstyle_opts=opts.TextStyleOpts(color='white', ))  # 图例字体颜色
    )
)
玫瑰图效果:
情感分布-玫瑰图
情感分布-玫瑰图

3.4 柱形图-TOP10关键词

先根据词云图部分提取出TOP10高频词(过滤掉停用词之后的):

代码语言:python
代码运行次数:0
运行
复制
data10 = collections.Counter(result).most_common(10)

然后带入柱形图,部分核心代码:

代码语言:python
代码运行次数:0
运行
复制
 # 画柱形图
bar = Bar(
    init_opts=opts.InitOpts(theme=theme_config, width='780px', height=chart_height,
                            chart_id='bar1'))  # 初始化条形图
bar.add_xaxis(x_data)  # 增加x轴数据
bar.add_yaxis("高频词汇", y_data)  # 增加y轴数据
bar.set_series_opts(label_opts=opts.LabelOpts(position="top"))  # Label出现位置
bar.set_global_opts(。。。)
柱形图效果:
TOP10高频词-柱形图
TOP10高频词-柱形图

3.5 折线图-讨论热度趋势

首先,根据评论时间统计出每天的微博评论数量:

代码语言:python
代码运行次数:0
运行
复制
# 按日期分组统计评论数量
df_comments['评论日期'] = df_comments['评论时间'].astype(str).str[:10]  # 提取日期
grp = df_comments.groupby('评论日期')['评论内容'].count()

然后,根据统计数据画出折线图,部分核心代码:

代码语言:python
代码运行次数:0
运行
复制
line = Line(
init_opts=opts.InitOpts(width='780px', height=chart_height, theme=theme_config, chart_id='line1'))  # 实例化
line.add_xaxis(x_data)  # 加入X轴数据
line.add_yaxis('讨论数量', y_data, is_smooth=True,
           areastyle_opts=opts.AreaStyleOpts(color=JsCode(area_color_js), opacity=1), )  # 加入Y轴数据
line.set_global_opts(。。。)
折线图效果:
讨论热度趋势-折线图
讨论热度趋势-折线图

3.6 地图-IP分布

由于IP属地字段都包含"来自"两字,先进行数据清洗,将"来自"去掉:

代码语言:python
代码运行次数:0
运行
复制
# 数据清洗-ip属地
ip_count = df_comments['评论者IP归属地'].str.replace('来自', '')

然后统计各个IP属地的数量,方便后续带入地图可视化:

代码语言:python
代码运行次数:0
运行
复制
# 统计各IP数量
ip_count = ip_count.value_counts()

下面开始绘制地图,部分核心代码:

代码语言:python
代码运行次数:0
运行
复制
f_map = (
    Map(init_opts=opts.InitOpts(width='600px',
                                height='600px',
                                theme=theme_config,
                                page_title=v_title,
                                chart_id='map1',
                                bg_color=None))
    .add(series_name="评论数量",
         data_pair=list(zip(loc_list, value_list)),
         maptype="china",  # 地图类型
         is_map_symbol_show=False)
    .set_global_opts(。。。)
    .set_series_opts(label_opts=opts.LabelOpts(is_show=True, font_size=8, ),
                     markpoint_opts=opts.MarkPointOpts(
                         symbol_size=[90, 90], symbol='circle'),
                     effect_opts=opts.EffectOpts(is_show='True', )
                     )
)
地图效果,如下:
评论IP分布-中国地图
评论IP分布-中国地图

当然,地图中的颜色,都是自己设置的十六进制颜色,可以根据自己的喜好更改。

3.7 Page组合大屏

最后,也是最关键的一步,把以上所有图表组合到一起,用Page组件,并且选用DraggablePageLayout方法,即拖拽的方式,组合图表:

代码语言:python
代码运行次数:0
运行
复制
# 绘制:整个页面
page = Page(
    page_title='微博热门评论可视化分析大屏-以"淄博烧烤"为例',
    layout=Page.DraggablePageLayout,
)
page.add(
    # 绘制:大标题
    make_title(v_title='微博热门评论可视化分析大屏-以"淄博烧烤"为例'),
    # 绘制:词云图
    make_wordcloud(v_title='评论内容-词云图'),
    # 绘制:饼图
    make_analyse_pie(v_title='情感分布-玫瑰图'),
    # 绘制:柱形图
    make_bar(v_title='TOP10关键词-柱形图'),
    # 绘制:折线图
    make_line(v_title='讨论热度趋势-折线图'),
    # 绘制:地图
    make_map(v_title='评论IP分布-中国地图'),
)
page.render('大屏_临时.html') 

本代码执行完毕后,打开临时html并排版,排版完点击Save Config,把json文件放到本目录下。

再执行最后一步,调用json配置文件,生成最终大屏文件。

代码语言:python
代码运行次数:0
运行
复制
Page.save_resize_html(
	source="大屏_临时.html",  # 源html文件
	cfg_file="chart_config.json",  # 配置文件
	dest="大屏_最终.html"  # 目标html文件
)

至此,所有代码执行完毕,生成了最终大屏html文件。

四、彩蛋-多种颜色主题

分享一个小技巧,我设置了一键更换颜色主题:

代码语言:python
代码运行次数:0
运行
复制
# 整体主题颜色
theme_config = ThemeType.SHINE

只需更换ThemeType参数,即可实现一键更换主题!

4.1 INFOGRAPHIC主题

INFOGRAPHIC
INFOGRAPHIC

4.2 MACARONS主题

MACARONS
MACARONS

4.3 SHINE主题

SHINE
SHINE

4.4 WALDEN主题

WALDEN
WALDEN

4.5 WESTEROS主题

WESTEROS
WESTEROS

4.6 WHITE主题

WHITE
WHITE

4.7 WONDERLAND主题

WONDERLAND
WONDERLAND

更多颜色主题等待小伙伴去发掘!

五、技术总结

技术开发流程:

  1. requests 爬虫发送请求
  2. json 解析返回数据
  3. re 正则表达式清洗文本
  4. pandas保存csv文件
  5. sqlalchemy 保存MySQL数据
  6. pyecharts 可视化开发
  7. snownlp 情感分析
  8. jieba 中文分词
  9. pyecharts+page 组合大屏
  10. flask 启动网页服务

END、转载声明

读者你好,本文转载自 @马哥python说,10年程序猿,专注python开发。

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文系转载前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、开发背景
  • 二、爬虫代码
    • 2.1 爬微博列表
    • 2.2 爬微博评论
    • 2.3 导入MySQL数据库
  • 三、可视化代码
    • 3.1 大标题
    • 3.2 词云图(含:加载停用词)
    • 3.3 玫瑰图(含:snownlp情感分析)
    • 3.4 柱形图-TOP10关键词
    • 3.5 折线图-讨论热度趋势
    • 3.6 地图-IP分布
    • 3.7 Page组合大屏
  • 四、彩蛋-多种颜色主题
    • 4.1 INFOGRAPHIC主题
    • 4.2 MACARONS主题
    • 4.3 SHINE主题
    • 4.4 WALDEN主题
    • 4.5 WESTEROS主题
    • 4.6 WHITE主题
    • 4.7 WONDERLAND主题
  • 五、技术总结
  • END、转载声明
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档