前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Transformers 4.37 中文文档(二十二)

Transformers 4.37 中文文档(二十二)

作者头像
ApacheCN_飞龙
发布2024-06-26 15:33:16
1110
发布2024-06-26 15:33:16
举报
文章被收录于专栏:信数据得永生信数据得永生

原文:huggingface.co/docs/transformers

BARThez

原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/barthez

概述

BARThez 模型是由 Moussa Kamal Eddine、Antoine J.-P. Tixier 和 Michalis Vazirgiannis 于 2020 年 10 月 23 日提出的BARThez: a Skilled Pretrained French Sequence-to-Sequence Model

论文摘要:

归纳传递学习,通过自监督学习实现,已经席卷了整个自然语言处理(NLP)领域,像 BERT 和 BART 这样的模型在无数自然语言理解任务上取得了新的最先进水平。尽管有一些显著的例外,但大多数可用的模型和研究都是针对英语进行的。在这项工作中,我们介绍了 BARThez,这是法语语言的第一个 BART 模型(据我们所知)。BARThez 在过去研究中从一个非常大的单语法语语料库上进行了预训练,我们对其进行了调整以适应 BART 的扰动方案。与已经存在的基于 BERT 的法语语言模型(如 CamemBERT 和 FlauBERT)不同,BARThez 特别适用于生成任务,因为它的编码器和解码器都经过了预训练。除了 FLUE 基准测试中的判别任务,我们还在一个新的摘要数据集 OrangeSum 上评估 BARThez,我们在本文中发布了这个数据集。我们还继续在 BARThez 的语料库上对已经预训练的多语言 BART 进行预训练,并展示了由此产生的模型,我们称之为 mBARTHez,比普通的 BARThez 提供了显著的提升,并且与 CamemBERT 和 FlauBERT 相媲美或者表现更好。

这个模型是由moussakam贡献的。作者的代码可以在这里找到。

BARThez 的实现与 BART 相同,除了标记化。有关配置类及其参数的信息,请参考 BART 文档。BARThez 特定的标记器如下所述。

资源

BarthezTokenizer

class transformers.BarthezTokenizer

< source >

代码语言:javascript
复制
( vocab_file bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' sp_model_kwargs: Optional = None **kwargs )

参数

  • vocab_file (str) — 包含实例化标记器所需词汇表的SentencePiece文件(通常具有*.spm*扩展名)。
  • bos_token (str, 可选,默认为"<s>") — 在预训练期间使用的序列开始标记。可以用作序列分类器标记。 在构建使用特殊标记的序列时,这不是用于序列开头的标记。使用的标记是cls_token
  • eos_token (str, 可选,默认为"</s>") — 序列结束标记。 在构建使用特殊标记的序列时,这不是用于序列结尾的标记。使用的标记是sep_token
  • sep_token (str, 可选,默认为"</s>") — 分隔符标记,用于从多个序列构建序列,例如用于序列分类的两个序列或用于文本和问题的问题回答。它也用作使用特殊标记构建的序列的最后一个标记。
  • cls_token (str, 可选,默认为"<s>") — 在进行序列分类(对整个序列而不是每个标记进行分类)时使用的分类器标记。当使用特殊标记构建序列时,它是序列的第一个标记。
  • unk_token (str, 可选,默认为"<unk>") — 未知标记。词汇表中没有的标记无法转换为 ID,而是设置为此标记。
  • pad_token (str, optional, 默认为 "<pad>") — 用于填充的标记,例如在批处理不同长度的序列时。
  • mask_token (str, optional, 默认为 "<mask>") — 用于屏蔽值的标记。在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。
  • sp_model_kwargs (dict, optional) — 将传递给SentencePieceProcessor.__init__()方法。SentencePiece 的 Python 包装器可用于设置:
    • enable_sampling: 启用子词正则化。
    • nbest_size: unigram 采样参数。对于 BPE-Dropout 无效。
      • nbest_size = {0,1}: 不执行采样。
      • nbest_size > 1: 从 nbest_size 结果中进行采样。
      • nbest_size < 0: 假设 nbest_size 为无限,并使用前向过滤和后向采样算法从所有假设(格)中进行采样。
    • alpha: 用于 unigram 采样的平滑参数,以及 BPE-dropout 的合并操作的丢弃概率。
  • sp_model (SentencePieceProcessor) — 用于每次转换(字符串、标记和 ID)的SentencePiece处理器。

改编自 CamembertTokenizer 和 BartTokenizer。构建一个 BARThez 标记器。基于SentencePiece

此标记器继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< source >

代码语言:javascript
复制
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — 将添加特殊标记的 ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选第二个 ID 列表。

返回

List[int]

具有适当特殊标记的 input IDs 列表。

通过连接和添加特殊标记从序列或序列对构建用于序列分类任务的模型输入。BARThez 序列具有以下格式:

  • 单个序列: <s> X </s>
  • 一对序列: <s> A </s></s> B </s>
convert_tokens_to_string

< source >

代码语言:javascript
复制
( tokens )

将一系列标记(字符串)转换为单个字符串。

create_token_type_ids_from_sequences

< source >

代码语言:javascript
复制
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选第二个 ID 列表。

返回

List[int]

零的列表。

从传递的两个序列创建一个用于序列对分类任务的掩码。

get_special_tokens_mask

< source >

代码语言:javascript
复制
( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选第二个 ID 列表。
  • already_has_special_tokens (bool, optional, 默认为 False) — 标记列表是否已经使用特殊标记格式化为模型。

返回

List[int]

一个整数列表,范围为[0, 1]:特殊标记为 1,序列标记为 0。

从没有添加特殊标记的标记列表中检索序列 ID。在使用标记器的prepare_for_model方法添加特殊标记时调用此方法。

BarthezTokenizerFast

class transformers.BarthezTokenizerFast

< source >

代码语言:javascript
复制
( vocab_file = None tokenizer_file = None bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' **kwargs )

参数

  • vocab_file (str) — 包含实例化分词器所需词汇表的SentencePiece文件(通常具有*.spm*扩展名)。
  • bos_token (str, optional, defaults to "<s>") — 在预训练期间使用的序列开头标记。可用作序列分类器标记。 在使用特殊标记构建序列时,这不是用于序列开头的标记。用于开头的标记是cls_token
  • eos_token (str, optional, defaults to "</s>") — 序列结束标记。 在使用特殊标记构建序列时,这不是用于序列结尾的标记。用于结尾的标记是sep_token
  • sep_token (str, optional, defaults to "</s>") — 分隔符标记,在从多个序列构建序列时使用,例如用于序列分类的两个序列或用于文本和问题的问题回答。它还用作使用特殊标记构建的序列的最后一个标记。
  • cls_token (str, optional, defaults to "<s>") — 在进行序列分类(整个序列的分类而不是每个标记的分类)时使用的分类器标记。当使用特殊标记构建序列时,它是序列的第一个标记。
  • unk_token (str, optional, defaults to "<unk>") — 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。
  • pad_token (str, optional, defaults to "<pad>") — 用于填充的标记,例如在批处理不同长度的序列时使用。
  • mask_token (str, optional, defaults to "<mask>") — 用于屏蔽值的标记。在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。
  • additional_special_tokens (List[str], optional, defaults to ["<s>NOTUSED", "</s>NOTUSED"]) — 分词器使用的其他特殊标记。

改编自 CamembertTokenizer 和 BartTokenizer。构建一个“快速”BARThez 分词器。基于SentencePiece

此分词器继承自 PreTrainedTokenizerFast,其中包含大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< source >

代码语言:javascript
复制
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — 将添加特殊标记的 ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选第二个 ID 列表。

返回

List[int]

带有适当特殊标记的输入 ID 列表。

通过连接和添加特殊标记构建用于序列分类任务的序列或序列对的模型输入。BARThez 序列具有以下格式:

  • 单个序列:<s> X </s>
  • 序列对:<s> A </s></s> B </s>
create_token_type_ids_from_sequences

< source >

代码语言:javascript
复制
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选第二个 ID 列表。

返回

List[int]

零的列表。

从传递的两个序列创建一个用于序列对分类任务的掩码。

BARTpho

原始文本: huggingface.co/docs/transformers/v4.37.2/en/model_doc/bartpho

概述

BARTpho 模型是由 Nguyen Luong Tran, Duong Minh Le 和 Dat Quoc Nguyen 在《BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese》中提出的。

论文摘要如下:

我们提供了两个版本的 BARTpho — BARTpho_word 和 BARTpho_syllable — 这是为越南语预训练的首个公开大规模单语序列到序列模型。我们的 BARTpho 使用了 BART 序列到序列去噪模型的“large”架构和预训练方案,因此特别适用于生成式 NLP 任务。在越南语文本摘要的下游任务上的实验表明,在自动和人工评估中,我们的 BARTpho 优于强基线 mBART,并改进了最新技术。我们发布 BARTpho 以促进未来的生成式越南语 NLP 任务的研究和应用。

这个模型是由dqnguyen贡献的。原始代码可以在这里找到。

用法示例

代码语言:javascript
复制
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer

>>> bartpho = AutoModel.from_pretrained("vinai/bartpho-syllable")

>>> tokenizer = AutoTokenizer.from_pretrained("vinai/bartpho-syllable")

>>> line = "Chúng tôi là những nghiên cứu viên."

>>> input_ids = tokenizer(line, return_tensors="pt")

>>> with torch.no_grad():
...     features = bartpho(**input_ids)  # Models outputs are now tuples

>>> # With TensorFlow 2.0+:
>>> from transformers import TFAutoModel

>>> bartpho = TFAutoModel.from_pretrained("vinai/bartpho-syllable")
>>> input_ids = tokenizer(line, return_tensors="tf")
>>> features = bartpho(**input_ids)

用法提示

  • 与 mBART 一样,BARTpho 使用 BART 的“large”架构,并在编码器和解码器的顶部增加了一个额外的层归一化层。因此,在 BART 文档中的用法示例,在适应 BARTpho 时,应通过用 mBART 专用类替换 BART 专用类来进行调整。例如:
代码语言:javascript
复制
>>> from transformers import MBartForConditionalGeneration

>>> bartpho = MBartForConditionalGeneration.from_pretrained("vinai/bartpho-syllable")
>>> TXT = "Chúng tôi là <mask> nghiên cứu viên."
>>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
>>> logits = bartpho(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> print(tokenizer.decode(predictions).split())
  • 这个实现仅用于标记化:“monolingual_vocab_file”包含从多语言 XLM-RoBERTa 的预训练 SentencePiece 模型“vocab_file”中提取的越南语专用类型。其他语言,如果使用这个预训练的多语言 SentencePiece 模型“vocab_file”进行子词分割,可以重用 BartphoTokenizer 与自己的语言专用“monolingual_vocab_file”。

BartphoTokenizer

class transformers.BartphoTokenizer

< source >

代码语言:javascript
复制
( vocab_file monolingual_vocab_file bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' sp_model_kwargs: Optional = None **kwargs )

参数

  • vocab_file (str) — 词汇文件的路径。这个词汇是来自多语言 XLM-RoBERTa 的预训练 SentencePiece 模型,也被 mBART 使用,包含 250K 种类型。
  • monolingual_vocab_file (str) — 单语词汇文件的路径。这个单语词汇包含从 250K 种类型的多语言词汇vocab_file中提取的越南语专用类型。
  • bos_token (str, 可选, 默认为 "<s>") — 在预训练期间使用的序列开始标记。可以用作序列分类器标记。 在构建序列时使用特殊标记时,这不是用于序列开头的标记。使用的标记是cls_token
  • eos_token (str, 可选, 默认为 "</s>") — 序列结束标记。 在构建序列时使用特殊标记时,这不是用于序列结尾的标记。使用的标记是sep_token
  • sep_token (str, 可选, 默认为 "</s>") — 分隔符标记,用于从多个序列构建序列,例如用于序列分类的两个序列或用于文本和问题的问题回答。它也用作使用特殊标记构建的序列的最后一个标记。
  • cls_token (str, 可选, 默认为 "<s>") — 用于进行序列分类(对整个序列而不是每个标记进行分类)时使用的分类器标记。在使用特殊标记构建序列时,它是序列的第一个标记。
  • unk_token (str, 可选, 默认为 "<unk>") — 未知标记。词汇中不存在的标记无法转换为 ID,而是设置为此标记。
  • pad_tokenstr可选,默认为"<pad>")- 用于填充的标记,例如在批处理不同长度的序列时。
  • mask_tokenstr可选,默认为"<mask>")- 用于屏蔽值的标记。这是在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。
  • sp_model_kwargsdict可选)- 将传递给SentencePieceProcessor.__init__()方法。SentencePiece 的 Python 包装器可用于设置:
    • enable_sampling:启用子词正则化。
    • nbest_size:unigram 的抽样参数。对于 BPE-Dropout 无效。
      • nbest_size = {0,1}:不执行抽样。
      • nbest_size > 1:从 nbest_size 结果中抽样。
      • nbest_size < 0: 假设 nbest_size 是无限的,并使用前向过滤和后向抽样算法从所有假设(格子)中抽样。
    • alpha:unigram 抽样的平滑参数,以及 BPE-dropout 合并操作的丢失概率。
  • sp_modelSentencePieceProcessor)- 用于每次转换(字符串、标记和 ID)的SentencePiece处理器。

改编自 XLMRobertaTokenizer。基于SentencePiece

此标记器继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

<来源>

代码语言:javascript
复制
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0List[int])- 将添加特殊标记的 ID 列表。
  • token_ids_1List[int]可选)- 序列对的可选第二个 ID 列表。

返回

List[int]

具有适当特殊标记的 input IDs 列表。

通过连接和添加特殊标记构建用于序列分类任务的序列或序列对的模型输入。BARTPho 序列的格式如下:

  • 单个序列:<s> X </s>
  • 序列对:<s> A </s></s> B </s>
convert_tokens_to_string

<来源>

代码语言:javascript
复制
( tokens )

将一系列标记(子词的字符串)转换为单个字符串。

create_token_type_ids_from_sequences

<来源>

代码语言:javascript
复制
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0List[int])- ID 列表。
  • token_ids_1List[int]可选)- 序列对的可选第二个 ID 列表。

返回

List[int]

零的列表。

从传递的两个序列创建一个用于序列对分类任务的掩码。BARTPho 不使用标记类型 ID,因此返回一个零的列表。

get_special_tokens_mask

<来源>

代码语言:javascript
复制
( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0List[int])- ID 列表。
  • token_ids_1List[int]可选)- 序列对的可选第二个 ID 列表。
  • already_has_special_tokensbool可选,默认为False)- 标记列表是否已经格式化为模型的特殊标记。

返回

List[int]

一个整数列表,范围为[0, 1]:1 表示特殊标记,0 表示序列标记。

从没有添加特殊标记的标记列表中检索序列 ID。在使用标记器prepare_for_model方法添加特殊标记时调用此方法。

BERT

原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/bert

概述

BERT 模型是由 Jacob Devlin、Ming-Wei Chang、Kenton Lee 和 Kristina Toutanova 在BERT:用于语言理解的深度双向 Transformer 的预训练中提出的。它是一个双向 Transformer,在大型语料库(包括多伦多书籍语料库和维基百科)上使用掩码语言建模目标和下一个句子预测进行预训练。

论文的摘要如下:

我们介绍了一种名为 BERT 的新语言表示模型,它代表双向编码器从变压器中获得的表示。与最近的语言表示模型不同,BERT 旨在通过在所有层中联合调节左右上下文来预训练深度双向表示,从未标记的文本中。因此,预训练的 BERT 模型只需一个额外的输出层就可以进行微调,从而创建用于各种任务的最先进模型,例如问答和语言推理,而无需进行实质性的任务特定架构修改。

BERT 在概念上简单且在经验上强大。它在十一个自然语言处理任务中取得了新的最先进结果,包括将 GLUE 得分提高到 80.5%(绝对改进 7.7 个百分点),MultiNLI 准确率提高到 86.7%(绝对改进 4.6%),SQuAD v1.1 问答测试 F1 提高到 93.2(绝对改进 1.5 个百分点)和 SQuAD v2.0 测试 F1 提高到 83.1(绝对改进 5.1 个百分点)。

此模型由thomwolf贡献。原始代码可以在这里找到。

使用提示

  • BERT 是一个带有绝对位置嵌入的模型,因此通常建议在右侧而不是左侧填充输入。
  • BERT 是通过掩码语言建模(MLM)和下一个句子预测(NSP)目标进行训练的。它在预测掩码令牌和 NLU 方面效率高,但不适用于文本生成。
  • 使用随机掩码破坏输入,更准确地说,在预训练期间,给定的令牌百分比(通常为 15%)被掩盖:
    • 具有概率 0.8 的特殊掩码令牌
    • 与被掩盖的令牌不同的随机令牌的概率为 0.1
    • 具有概率 0.1 的相同令牌
  • 模型必须预测原始句子,但有第二个目标:输入是两个句子 A 和 B(中间有一个分隔令牌)。以 50%的概率,这些句子在语料库中是连续的,在剩下的 50%中它们不相关。模型必须预测这些句子是否连续。

资源

一份官方 Hugging Face 和社区(由🌎表示)资源列表,可帮助您开始使用 BERT。如果您有兴趣提交资源以包含在此处,请随时打开一个 Pull Request,我们将对其进行审查!资源应该理想地展示一些新内容,而不是重复现有资源。

文本分类

标记分类

填充掩码

问答

多项选择

⚡️ 推理

  • 一篇关于如何使用 Hugging Face Transformers 和 AWS Inferentia 加速 BERT 推理的博文。
  • 一篇关于如何使用 DeepSpeed-Inference 在 GPU 上加速 BERT 推理的博文。

⚙️ 预训练

  • 一篇关于如何使用 Hugging Face Transformers 和 Habana Gaudi 进行 BERT 预训练的博文。

🚀 部署

BertConfig

class transformers.BertConfig

<来源>

代码语言:javascript
复制
( vocab_size = 30522 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 pad_token_id = 0 position_embedding_type = 'absolute' use_cache = True classifier_dropout = None **kwargs )

参数

  • vocab_size (int, optional, defaults to 30522) — BERT 模型的词汇表大小。定义了在调用 BertModel 或 TFBertModel 时可以表示的不同标记数量。
  • hidden_size (int, optional, defaults to 768) — 编码器层和池化器层的维度。
  • num_hidden_layers (int, optional, defaults to 12) — Transformer 编码器中的隐藏层数量。
  • num_attention_heads (int, optional, defaults to 12) — Transformer 编码器中每个注意力层的注意力头数。
  • intermediate_size (int, optional, defaults to 3072) — Transformer 编码器中“中间”(通常称为前馈)层的维度。
  • hidden_act (str or Callable, optional, defaults to "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu""relu""silu""gelu_new"
  • hidden_dropout_prob (float, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的丢弃概率。
  • attention_probs_dropout_prob (float, optional, defaults to 0.1) — 注意力概率的丢弃比例。
  • max_position_embeddings (int, optional, defaults to 512) — 该模型可能使用的最大序列长度。通常设置为一个较大的值(例如 512、1024 或 2048)以防万一。
  • type_vocab_size (int, optional, defaults to 2) — 在调用 BertModel 或 TFBertModel 时传递的token_type_ids的词汇表大小。
  • initializer_range (float, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。
  • layer_norm_eps (float, optional, defaults to 1e-12) — 层归一化层使用的 epsilon。
  • position_embedding_type (str, optional, defaults to "absolute") — 位置嵌入的类型。选择"absolute""relative_key""relative_key_query"之一。对于位置嵌入,请使用"absolute"。有关"relative_key"的更多信息,请参考Self-Attention with Relative Position Representations (Shaw et al.)。有关"relative_key_query"的更多信息,请参考Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)中的Method 4
  • is_decoder (bool, optional, defaults to False) — 模型是否用作解码器。如果为False,则模型用作编码器。
  • use_cache (bool, optional, defaults to True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在config.is_decoder=True时相关。
  • classifier_dropout (float, optional) — 分类头的丢弃比例。

这是用于存储 BertModel 或 TFBertModel 配置的配置类。它用于根据指定的参数实例化 BERT 模型,定义模型架构。使用默认值实例化配置将产生类似于 BERT bert-base-uncased架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读来自 PretrainedConfig 的文档以获取更多信息。

示例:

代码语言:javascript
复制
>>> from transformers import BertConfig, BertModel

>>> # Initializing a BERT bert-base-uncased style configuration
>>> configuration = BertConfig()

>>> # Initializing a model (with random weights) from the bert-base-uncased style configuration
>>> model = BertModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

BertTokenizer

class transformers.BertTokenizer

< source >

代码语言:javascript
复制
( vocab_file do_lower_case = True do_basic_tokenize = True never_split = None unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' tokenize_chinese_chars = True strip_accents = None **kwargs )

参数

  • vocab_file (str) — 包含词汇表的文件。
  • do_lower_case (bool可选,默认为True) — 是否在分词时将输入转换为小写。
  • do_basic_tokenize (bool可选,默认为True) — 是否在 WordPiece 之前进行基本分词。
  • never_split (Iterable可选) — 在分词过程中永远不会分割的标记集合。仅在do_basic_tokenize=True时有效。
  • unk_token (str可选,默认为"[UNK]") — 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。
  • sep_token (str可选,默认为"[SEP]") — 分隔符标记,用于从多个序列构建序列,例如用于序列分类的两个序列或用于文本和问题的问题回答。它还用作带有特殊标记构建的序列的最后一个标记。
  • pad_token (str可选,默认为"[PAD]") — 用于填充的标记,例如在批处理不同长度的序列时使用。
  • cls_token (str可选,默认为"[CLS]") — 分类器标记,用于进行序列分类(对整个序列而不是每个标记进行分类)。构建带有特殊标记的序列时,它是序列的第一个标记。
  • mask_token (str可选,默认为"[MASK]") — 用于屏蔽值的标记。这是在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。
  • tokenize_chinese_chars (bool可选,默认为True) — 是否对中文字符进行分词。 这可能应该对日语停用(请参阅此问题)。
  • strip_accents (bool可选) — 是否去除所有重音符号。如果未指定此选项,则将由lowercase的值确定(与原始 BERT 相同)。

构建一个基于 WordPiece 的 BERT 分词器。

这个分词器继承自 PreTrainedTokenizer,其中包含大部分主要方法。用户应参考这个超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< source >

代码语言:javascript
复制
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — 将添加特殊标记的 ID 列表。
  • token_ids_1 (List[int]可选) — 序列对的可选第二个 ID 列表。

返回

List[int]

具有适当特殊标记的输入 ID 列表。

通过连接和添加特殊标记,为序列分类任务构建模型输入的序列或序列对。BERT 序列的格式如下:

  • 单个序列:[CLS] X [SEP]
  • 一对序列:[CLS] A [SEP] B [SEP]
get_special_tokens_mask

<来源>

代码语言:javascript
复制
( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0List[int])— ID 列表。
  • token_ids_1List[int]可选)— 序列对的可选第二个 ID 列表。
  • already_has_special_tokensbool可选,默认为False)— 标记列表是否已经使用特殊标记格式化为模型。

返回

List[int]

一个整数列表,范围为[0, 1]:1 表示特殊标记,0 表示序列标记。

从没有添加特殊标记的标记列表中检索序列 ID。当使用标记器的prepare_for_model方法添加特殊标记时,会调用此方法。

create_token_type_ids_from_sequences

<来源>

代码语言:javascript
复制
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0List[int])— ID 列表。
  • token_ids_1List[int]可选)— 序列对的可选第二个 ID 列表。

返回

List[int]

根据给定序列的标记类型 ID 列表。

从传递的两个序列创建一个掩码,用于在序列对分类任务中使用。BERT 序列

一对掩码的格式如下:

代码语言:javascript
复制
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

如果token_ids_1None,则此方法仅返回掩码的第一部分(0s)。

save_vocabulary

<来源>

代码语言:javascript
复制
( save_directory: str filename_prefix: Optional = None )

PytorchHide Pytorch 内容

BertTokenizerFast

class transformers.BertTokenizerFast

<来源>

代码语言:javascript
复制
( vocab_file = None tokenizer_file = None do_lower_case = True unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' tokenize_chinese_chars = True strip_accents = None **kwargs )

参数

  • vocab_filestr)— 包含词汇表的文件。
  • do_lower_casebool可选,默认为True)— 在标记化时是否将输入转换为小写。
  • unk_tokenstr可选,默认为"[UNK]")— 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。
  • sep_tokenstr可选,默认为"[SEP]")— 用于从多个序列构建序列时使用的分隔符标记,例如用于序列分类的两个序列或用于问题回答的文本和问题。它还用作使用特殊标记构建的序列的最后一个标记。
  • pad_tokenstr可选,默认为"[PAD]")— 用于填充的标记,例如在批处理不同长度的序列时。
  • cls_tokenstr可选,默认为"[CLS]")— 在进行序列分类(整个序列的分类而不是每个标记的分类)时使用的分类器标记。这是使用特殊标记构建时的序列的第一个标记。
  • mask_tokenstr可选,默认为"[MASK]")— 用于屏蔽值的标记。这是在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。
  • clean_textbool可选,默认为True)— 在标记化之前是否清理文本,通过删除任何控制字符并将所有空格替换为经典空格。
  • tokenize_chinese_charsbool可选,默认为True)— 是否标记化中文字符。这可能应该在日语中停用(参见此问题)。
  • strip_accentsbool可选)— 是否去除所有重音符号。如果未指定此选项,则将由lowercase的值确定(与原始 BERT 相同)。
  • wordpieces_prefix (str, optional, defaults to "##") — 子词的前缀。

构建一个“快速”BERT 分词器(由 HuggingFace 的 tokenizers 库支持)。基于 WordPiece。

此分词器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

<来源>

代码语言:javascript
复制
( token_ids_0 token_ids_1 = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — 要添加特殊标记的 ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选第二个 ID 列表。

返回

List[int]

具有适当特殊标记的 输入 ID 列表。

通过连接和添加特殊标记从序列或序列对构建用于序列分类任务的模型输入。BERT 序列的格式如下:

  • 单个序列:[CLS] X [SEP]
  • 序列对:[CLS] A [SEP] B [SEP]
create_token_type_ids_from_sequences

<来源>

代码语言:javascript
复制
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — ID 列表。
  • token_ids_1 (List[int], optional) — 序列对的可选第二个 ID 列表。

返回

List[int]

根据给定序列的 token type IDs 列表。

从传递的两个序列创建用于序列对分类任务中使用的掩码。BERT 序列

序列对掩码的格式如下:

代码语言:javascript
复制
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

如果 token_ids_1None,此方法仅返回掩码的第一部分(0s)。

TensorFlow 隐藏 TensorFlow 内容

TFBertTokenizer

class transformers.TFBertTokenizer

<来源>

代码语言:javascript
复制
( vocab_list: List do_lower_case: bool cls_token_id: int = None sep_token_id: int = None pad_token_id: int = None padding: str = 'longest' truncation: bool = True max_length: int = 512 pad_to_multiple_of: int = None return_token_type_ids: bool = True return_attention_mask: bool = True use_fast_bert_tokenizer: bool = True **tokenizer_kwargs )

参数

  • vocab_list (list) — 包含词汇表的列表。
  • do_lower_case (bool, optional, defaults to True) — 在分词时是否将输入转换为小写。
  • cls_token_id (str, optional, defaults to "[CLS]") — 在进行序列分类(整个序列而不是每个标记的分类)时使用的分类器标记。当使用特殊标记构建序列时,它是序列的第一个标记。
  • sep_token_id (str, optional, defaults to "[SEP]") — 分隔符标记,在从多个序列构建序列时使用,例如用于序列分类的两个序列或用于文本和问题的问题回答。它也用作使用特殊标记构建的序列的最后一个标记。
  • pad_token_id (str, optional, defaults to "[PAD]") — 用于填充的标记,例如在批处理不同长度的序列时使用。
  • padding (str, defaults to "longest") — 要使用的填充类型。可以是 "longest",仅填充到批处理中最长样本的长度,或者 "max_length",将所有输入填充到分词器支持的最大长度。
  • truncation (bool, optional, defaults to True) — 是否将序列截断到最大长度。
  • max_length (int, optional, defaults to 512) — 序列的最大长度,用于填充(如果 padding"max_length")和/或截断(如果 truncationTrue)。
  • pad_to_multiple_of (int, optional, defaults to None) — 如果设置,序列将填充到此值的倍数。
  • return_token_type_ids (bool, optional, defaults to True) — 是否返回 token_type_ids。
  • return_attention_mask (bool, optional, defaults to True) — 是否返回 attention_mask。
  • use_fast_bert_tokenizerbool可选,默认为True)-如果为 True,将使用来自 Tensorflow Text 的 FastBertTokenizer 类。如果为 False,将使用 BertTokenizer 类。BertTokenizer 支持一些额外选项,但速度较慢且无法导出到 TFLite。

这是 BERT 的图内标记器。它应该类似于其他标记器进行初始化,使用from_pretrained()方法。也可以使用from_tokenizer()方法进行初始化,该方法从现有的标准标记器对象导入设置。

与其他 Hugging Face 标记器不同,图内标记器实际上是 Keras 层,设计为在调用模型时运行,而不是在预处理期间运行。因此,它们的选项比标准标记器类有些受限。当您想要创建一个直接从tf.string输入到输出的端到端模型时,它们是最有用的。

from_pretrained

<来源>

代码语言:javascript
复制
( pretrained_model_name_or_path: Union *init_inputs **kwargs )

参数

  • pretrained_model_name_or_pathstros.PathLike)-预训练标记器的名称或路径。

从预训练标记器实例化一个TFBertTokenizer

示例:

代码语言:javascript
复制
from transformers import TFBertTokenizer

tf_tokenizer = TFBertTokenizer.from_pretrained("bert-base-uncased")
from_tokenizer

<来源>

代码语言:javascript
复制
( tokenizer: PreTrainedTokenizerBase **kwargs )

参数

  • tokenizerPreTrainedTokenizerBase)-用于初始化TFBertTokenizer的标记器。

从现有的Tokenizer初始化一个TFBertTokenizer

示例:

代码语言:javascript
复制
from transformers import AutoTokenizer, TFBertTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
tf_tokenizer = TFBertTokenizer.from_tokenizer(tokenizer)

BERT 特定的输出

class transformers.models.bert.modeling_bert.BertForPreTrainingOutput

<来源>

代码语言:javascript
复制
( loss: Optional = None prediction_logits: FloatTensor = None seq_relationship_logits: FloatTensor = None hidden_states: Optional = None attentions: Optional = None )

参数

  • loss可选,在提供labels时返回,形状为(1,)torch.FloatTensor)-作为掩码语言建模损失和下一个序列预测(分类)损失之和的总损失。
  • prediction_logits(形状为(batch_size, sequence_length, config.vocab_size)torch.FloatTensor)-语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • seq_relationship_logits(形状为(batch_size, 2)torch.FloatTensor)-下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 连续分数)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)-形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出,一个用于每一层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)-形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

BertForPreTraining 的输出类型。

class transformers.models.bert.modeling_tf_bert.TFBertForPreTrainingOutput

<来源>

代码语言:javascript
复制
( loss: tf.Tensor | None = None prediction_logits: tf.Tensor = None seq_relationship_logits: tf.Tensor = None hidden_states: Optional[Union[Tuple[tf.Tensor], tf.Tensor]] = None attentions: Optional[Union[Tuple[tf.Tensor], tf.Tensor]] = None )

参数

  • prediction_logits(形状为(batch_size, sequence_length, config.vocab_size)tf.Tensor)-语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • seq_relationship_logits(形状为(batch_size, 2)tf.Tensor)-下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 连续分数)。
  • hidden_states (tuple(tf.Tensor), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)tf.Tensor 元组(一个用于嵌入的输出 + 一个用于每个层的输出)。 模型在每个层的输出以及初始嵌入输出的隐藏状态。
  • attentions (tuple(tf.Tensor), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)tf.Tensor 元组(每个层一个)。 自注意力头中的注意力 softmax 后的注意力权重,用于计算加权平均值。

TFBertForPreTraining 的输出类型。

class transformers.models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput

< source >

代码语言:javascript
复制
( prediction_logits: Array = None seq_relationship_logits: Array = None hidden_states: Optional = None attentions: Optional = None )

参数

  • prediction_logits (形状为 (batch_size, sequence_length, config.vocab_size)jnp.ndarray`) — 语言建模头的预测分数(SoftMax 之前的每个词汇标记的分数)。
  • seq_relationship_logits (形状为 (batch_size, 2)jnp.ndarray`) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 连续性分数)。
  • hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入的输出 + 一个用于每个层的输出)。 模型在每个层的输出以及初始嵌入输出的隐藏状态。
  • attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每个层一个)。 自注意力头中的注意力 softmax 后的注意力权重,用于计算加权平均值。

BertForPreTraining 的输出类型。

replace

< source >

代码语言:javascript
复制
( **updates )

“返回一个用新值替换指定字段的新对象。

Pytorch 隐藏 Pytorch 内容

BertModel

class transformers.BertModel

< source >

代码语言:javascript
复制
( config add_pooling_layer = True )

参数

  • config (BertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

裸的 Bert 模型变压器输出原始隐藏状态,没有特定的头部。

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个 PyTorch torch.nn.Module 子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以了解所有与一般用法和行为相关的事项。

该模型可以作为编码器(仅具有自注意力)以及解码器运行,此时在自注意力层之间添加了一层交叉注意力,遵循 Attention is all you need 中描述的架构,作者为 Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Lukasz Kaiser 和 Illia Polosukhin。

为了作为解码器行为,模型需要使用配置中设置为 Trueis_decoder 参数进行初始化。要在 Seq2Seq 模型中使用,模型需要使用 is_decoder 参数和 add_cross_attention 设置为 True 进行初始化;然后期望将 encoder_hidden_states 作为输入传递给前向传递。

forward

< source >

代码语言:javascript
复制
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。 什么是输入 ID?
  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的蒙版。蒙版值在 [0, 1] 中选择:
    • 1 用于未被 masked 的标记,
    • 0 用于被 masked 的标记。

    什么是注意力蒙版?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 段标记索引,指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:
    • 0 对应于一个 句子 A 的标记,
    • 1 对应于一个 句子 B 的标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。 什么是位置 ID?
  • head_mask (torch.FloatTensor,形状为 (num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块中选择的头部失效的蒙版。蒙版值在 [0, 1] 中选择:
    • 1 表示头部未被 masked
    • 0 表示头部被 masked
  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的 attentions
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的 hidden_states
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。
  • encoder_hidden_states (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免对编码器输入的填充标记索引执行注意力的掩码。如果模型配置为解码器,则此掩码用于交叉注意力。掩码值选择在[0, 1]中。
    • 对于未被masked的标记为 1,
    • 对于被masked的标记为 0。
  • past_key_values (tuple(tuple(torch.FloatTensor)),长度为config.n_layers,每个元组有 4 个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)的张量) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。 如果使用past_key_values,用户可以选择仅输入最后的decoder_input_ids(那些没有将其过去的键值状态提供给此模型的)的形状为(batch_size, 1)的张量,而不是所有形状为(batch_size, sequence_length)decoder_input_ids
  • use_cache (bool, optional) — 如果设置为True,则返回past_key_values键值状态,可用于加速解码(参见past_key_values)。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个torch.FloatTensor元组(如果传递return_dict=False或当config.return_dict=False时)包含根据配置(BertConfig)和输入的不同元素。

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态的序列。
  • pooler_output (torch.FloatTensor of shape (batch_size, hidden_size)) — 序列第一个标记(分类标记)的最后一层隐藏状态,在通过用于辅助预训练任务的层进一步处理后。例如,对于 BERT 系列模型,这返回经过线性层和 tanh 激活函数处理后的分类标记。线性层权重是从预训练期间的下一个句子预测(分类)目标中训练的。
  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)。 模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)。 在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。
  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True and config.add_cross_attention=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)。 解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layers的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,如果config.is_encoder_decoder=True,还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。 包含预先计算的隐藏状态(自注意力块中的键和值,以及如果config.is_encoder_decoder=True,则包含交叉注意力块中的隐藏状态),可以用于加速顺序解码(查看past_key_values输入)。

BertModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在此之后调用Module实例,而不是这个函数,因为前者会处理运行前后的处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, BertModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = BertModel.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

BertForPreTraining

class transformers.BertForPreTraining

<来源>

代码语言:javascript
复制
( config )

参数

  • config (BertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

Bert 模型在顶部有两个头部,分别是预训练中的masked language modeling头部和next sentence prediction (classification)头部。

这个模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有信息。

forward

<来源>

代码语言:javascript
复制
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None next_sentence_label: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.models.bert.modeling_bert.BertForPreTrainingOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。 什么是 input IDs?
  • attention_mask (torch.FloatTensor,形状为(batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
    • 1 代表未被掩盖的标记,
    • 0 对应于被掩盖的标记。

    什么是 attention masks?

  • token_type_ids (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引选择在[0, 1]之间:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是 token type IDs?

  • position_ids(形状为 (batch_size, sequence_length)torch.LongTensor可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。 什么是位置 ID?
  • head_mask(形状为 (num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块的特定头部失效的掩码。掩码值选在 [0, 1] 之间:
    • 1 表示头部未被“掩码”。
    • 0 表示头部被“掩码”。
  • inputs_embeds(形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制权,以便将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的 attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。 标签(形状为 (batch_size, sequence_length)torch.LongTensor可选):用于计算掩码语言建模损失的标签。索引应在 [-100, 0, ..., config.vocab_size] 内(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码),损失仅计算具有标签在 [0, ..., config.vocab_size] 内的标记。next_sentence_label(形状为 (batch_size,)torch.LongTensor可选):用于计算下一个序列预测(分类)损失的标签。输入应为一个序列对(参见 input_ids 文档字符串)。索引应在 [0, 1] 内:
    • 0 表示序列 B 是序列 A 的延续,
    • 1 表示序列 B 是一个随机序列。kwargs(Dict[str, any],可选,默认为 {}):用于隐藏已被弃用的旧参数。

返回

transformers.models.bert.modeling_bert.BertForPreTrainingOutput 或 tuple(torch.FloatTensor)

一个 transformers.models.bert.modeling_bert.BertForPreTrainingOutput 或一个 torch.FloatTensor 元组(如果传递 return_dict=False 或当 config.return_dict=False 时)包含各种元素,取决于配置(BertConfig)和输入。

  • loss可选,当提供 labels 时返回,形状为 (1,)torch.FloatTensor)— 作为掩码语言建模损失和下一个序列预测(分类)损失之和的总损失。
  • prediction_logits(形状为 (batch_size, sequence_length, config.vocab_size)torch.FloatTensor)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • seq_relationship_logits(形状为 (batch_size, 2)torch.FloatTensor)— 下一个序列预测(分类)头部的预测分数(SoftMax 之前的 True/False 继续分数)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回)— 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(一个用于嵌入输出,一个用于每一层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)—形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

BertForPreTraining 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, BertForPreTraining
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = BertForPreTraining.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

BertLMHeadModel

class transformers.BertLMHeadModel

<来源>

代码语言:javascript
复制
( config )

参数

  • config(BertConfig)—模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

Bert 模型在顶部带有language modeling头用于 CLM 微调。

这个模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是 PyTorch 的torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有信息。

forward

<来源>

代码语言:javascript
复制
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)—输入序列标记在词汇表中的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)—用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]中:
    • 1 表示未被“masked”掉的标记,
    • 0 表示被masked掉的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)—段标记索引,用于指示输入的第一部分和第二部分。索引选择在[0, 1]中:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)—每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)—用于使自注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]中:
    • 1 表示头部未被“masked”掉,
    • 0 表示头部被masked掉。
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选的,可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。
  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。掩码值选在[0, 1]中选择:
    • 对于未被masked的标记为 1,
    • 对于被masked的标记为 0。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算从左到右的语言建模损失(下一个单词预测)的标签。索引应在[-100, 0, ..., config.vocab_size](参见input_ids文档字符串)。索引设置为-100的标记将被忽略(掩码),损失仅计算具有标签 n [0, ..., config.vocab_size]的标记。
  • past_key_values (tuple(tuple(torch.FloatTensor)),长度为config.n_layers,每个元组有 4 个形状为(batch_size, num_heads, sequence_length - 1, embed_size_per_head)的张量) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。 如果使用past_key_values,用户可以选择仅输入最后一个decoder_input_ids(那些没有将其过去的键值状态提供给此模型的)的形状为(batch_size, 1),而不是所有decoder_input_ids的形状为(batch_size, sequence_length)
  • use_cache (bool, optional) — 如果设置为True,则返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含根据配置(BertConfig)和输入的各种元素。

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — 语言建模损失(用于下一个标记预测)。
  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — 一个元组,包含torch.FloatTensor(一个用于嵌入层的输出,如果模型有一个嵌入层,+ 一个用于每一层的输出)的形状为(batch_size, sequence_length, hidden_size)。 模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), 可选的, 当传递output_attentions=True或者config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
  • cross_attentions (tuple(torch.FloatTensor), 可选的, 当传递output_attentions=True或者config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。 交叉注意力 softmax 后的注意力权重,用于计算交叉注意力头中的加权平均值。
  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选的, 当传递use_cache=True或者config.use_cache=True时返回) — 长度为config.n_layerstorch.FloatTensor元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态。只有在config.is_decoder = True时相关。 包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(查看past_key_values输入)。

BertLMHeadModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在这个函数内定义,但应该在之后调用Module实例,而不是这个函数,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> import torch
>>> from transformers import AutoTokenizer, BertLMHeadModel

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = BertLMHeadModel.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits

BertForMaskedLM

class transformers.BertForMaskedLM

< source >

代码语言:javascript
复制
( config )

参数

  • config (BertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部带有语言建模头的 Bert 模型。

这个模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是 PyTorch torch.nn.Module的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。

forward

< source >

代码语言:javascript
复制
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。 什么是输入 ID?
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), 可选的) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
    • 1 表示未被masked的标记,
    • 0 表示被masked的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]。 什么是位置 ID?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中选择的头部失效的掩码。掩码值选定在[0, 1]之间:
    • 1 表示头部未被masked
    • 0 表示头部被masked
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]范围内(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(被掩码),损失仅计算具有标签在[0, ..., config.vocab_size]范围内的标记。

返回

transformers.modeling_outputs.MaskedLMOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个torch.FloatTensor的元组(如果传递了return_dict=False或当config.return_dict=False时),包括根据配置(BertConfig)和输入的不同元素。

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — 掩码语言建模(MLM)损失。
  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — 语言建模头部的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — 模型在每一层输出的隐藏状态的元组,如果模型有嵌入层,则包括嵌入的输出,形状为(batch_size, sequence_length, hidden_size)。 模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — 每一层的注意力张量的元组,形状为(batch_size, num_heads, sequence_length, sequence_length)。 在自注意力头中用于计算加权平均值的注意力 softmax 后的注意力权重。

BertForMaskedLM 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, BertForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = BertForMaskedLM.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
'paris'

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
0.88

BertForNextSentencePrediction

class transformers.BertForNextSentencePrediction

<来源>

代码语言:javascript
复制
( config )

参数

  • config(BertConfig)— 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

Bert 模型在顶部带有下一个句子预测(分类)头。

这个模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入大小、修剪头等)。

这个模型也是 PyTorch 的torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

代码语言:javascript
复制
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **kwargs ) → export const metadata = 'undefined';transformers.modeling_outputs.NextSentencePredictorOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]之间:
    • 1 表示未被掩码的标记,
    • 0 表示被掩码的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 指示输入的第一部分和第二部分的段标记索引。索引选定在[0, 1]之间:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 每个输入序列标记在位置嵌入中的位置索引。选定范围为[0, config.max_position_embeddings - 1]。 什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]之间:
    • 1 表示头部未被掩码
    • 0 表示头部被掩码
  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通元组。
  • labels (torch.LongTensor,形状为(batch_size,)可选) — 用于计算下一个序列预测(分类)损失的标签。输入应该是一个序列对(参见input_ids文档字符串)。索引应该在[0, 1]之间。
    • 0 表示序列 B 是序列 A 的延续,
    • 1 表示序列 B 是一个随机序列。

返回

transformers.modeling_outputs.NextSentencePredictorOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.NextSentencePredictorOutput 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含根据配置(BertConfig)和输入的不同元素。

  • loss (torch.FloatTensor,形状为(1,)可选,当提供next_sentence_label时返回) — 下一个序列预测(分类)损失。
  • logits (torch.FloatTensor,形状为(batch_size, 2)) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 延续分数)。
  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每一层的输出)的形状为(batch_size, sequence_length, hidden_size)。 模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — torch.FloatTensor元组(每层一个)的形状为(batch_size, num_heads, sequence_length, sequence_length)。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

BertForNextSentencePrediction 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, BertForNextSentencePrediction
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = BertForNextSentencePrediction.from_pretrained("bert-base-uncased")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")

>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1]  # next sentence was random

BertForSequenceClassification

class transformers.BertForSequenceClassification

<来源>

代码语言:javascript
复制
( config )

参数

  • config(BertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

Bert 模型变换器,顶部带有一个序列分类/回归头部(在汇总输出的顶部有一个线性层),例如用于 GLUE 任务。

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存,调整输入嵌入大小,修剪头等)。

此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

代码语言:javascript
复制
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 输入 ID 是什么?
  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在填充标记索引上执行注意力的蒙版。蒙版值选择在[0, 1]内:
    • 1 表示未被屏蔽的标记,
    • 0 表示被屏蔽的标记。

    注意力蒙版是什么?

  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]内:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 每个输入序列标记的位置的索引在位置嵌入中选择在范围[0, config.max_position_embeddings - 1]内。 什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块的选定头部无效的蒙版。蒙版值选择在[0, 1]内:
    • 1 表示头部未被屏蔽,
    • 0 表示头部被屏蔽。
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor,形状为(batch_size,)可选的) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个torch.FloatTensor元组(如果传递return_dict=False或者当config.return_dict=False时)包含各种元素,取决于配置(BertConfig)和输入。

  • loss (torch.FloatTensor,形状为(1,)可选的,当提供labels时返回) — 分类(或如果 config.num_labels==1 则为回归)损失。
  • logits (torch.FloatTensor,形状为(batch_size, config.num_labels)) — 分类(或如果 config.num_labels==1 则为回归)分数(在 SoftMax 之前)。
  • hidden_states (tuple(torch.FloatTensor)可选的,当传递output_hidden_states=True或者当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有一个嵌入层,则为嵌入的输出加上每一层的输出)。 模型在每一层输出的隐藏状态加上可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), 可选的, 当传递output_attentions=True或者当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。 在自注意力头中用于计算加权平均值的注意力 softmax 后的注意力权重。

BertForSequenceClassification 的前向方法,覆盖__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类示例:

代码语言:javascript
复制
>>> import torch
>>> from transformers import AutoTokenizer, BertForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("textattack/bert-base-uncased-yelp-polarity")
>>> model = BertForSequenceClassification.from_pretrained("textattack/bert-base-uncased-yelp-polarity")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'LABEL_1'

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BertForSequenceClassification.from_pretrained("textattack/bert-base-uncased-yelp-polarity", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.01

多标签分类示例:

代码语言:javascript
复制
>>> import torch
>>> from transformers import AutoTokenizer, BertForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("textattack/bert-base-uncased-yelp-polarity")
>>> model = BertForSequenceClassification.from_pretrained("textattack/bert-base-uncased-yelp-polarity", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BertForSequenceClassification.from_pretrained(
...     "textattack/bert-base-uncased-yelp-polarity", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

BertForMultipleChoice

class transformers.BertForMultipleChoice

<来源>

代码语言:javascript
复制
( config )

参数

  • config(BertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部具有多选分类头的 Bert 模型(在汇总输出的顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

这个模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。

forward

<来源>

代码语言:javascript
复制
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length)) — 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 什么是输入 IDs?
  • attention_mask (torch.FloatTensor of shape (batch_size, num_choices, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
    • 对于未被masked的标记为 1。
    • 对于被masked的标记为 0。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]之间:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是 token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]。 什么是位置 IDs?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]之间:
    • 1 表示头部未被masked,
    • 0 表示头部被masked
  • inputs_embeds (torch.FloatTensor of shape (batch_size, num_choices, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]之间,其中num_choices是输入张量第二维的大小。(参见上面的input_ids

返回

transformers.modeling_outputs.MultipleChoiceModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含根据配置(BertConfig)和输入的各种元素。

  • loss (torch.FloatTensor of shape (1,), optional, 当提供labels时返回) — 分类损失。
  • logits(形状为(batch_size, num_choices)torch.FloatTensor)— num_choices是输入张量的第二维度。(参见上面的input_ids)。 分类得分(SoftMax 之前)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每一层的输出)。 模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。 在自注意力头中用于计算加权平均值的注意力权重 softmax 后。

BertForMultipleChoice 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, BertForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = BertForMultipleChoice.from_pretrained("bert-base-uncased")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

BertForTokenClassification

class transformers.BertForTokenClassification

<来源>

代码语言:javascript
复制
( config )

参数

  • config(BertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部带有标记分类头的 Bert 模型(隐藏状态输出的顶部线性层),例如用于命名实体识别(NER)任务。

这个模型继承自 PreTrainedModel。查看超类文档以了解库实现的通用方法(例如下载或保存,调整输入嵌入大小,修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有信息。

forward

<来源>

代码语言:javascript
复制
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]中:
    • 对于未被masked的标记为 1,
    • 对于被masked的标记为 0。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]。 什么是位置 ID?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值在[0, 1]中选择:
    • 1 表示头部未被掩盖,
    • 0 表示头部被掩盖。
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将很有用,而不是使用模型的内部嵌入查找矩阵。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的attentions
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的hidden_states
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。
  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]内。

返回

transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含各种元素,取决于配置(BertConfig)和输入。

  • loss (torch.FloatTensor of shape (1,), optional, 当提供labels时返回) — 分类损失。
  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.num_labels)) — 分类分数(SoftMax 之前)。
  • hidden_states (tuple(torch.FloatTensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型具有嵌入层,则为嵌入输出的一个+每层输出的一个)。 模型在每一层输出的隐藏状态加上可选的初始嵌入输出。
  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

BertForTokenClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用 Module 实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, BertForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
>>> model = BertForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] 

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.01

BertForQuestionAnswering

class transformers.BertForQuestionAnswering

<来源>

代码语言:javascript
复制
( config )

参数

  • config (BertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

Bert 模型在顶部具有一个用于提取式问答任务(如 SQuAD)的跨度分类头部(在隐藏状态输出的顶部有线性层,用于计算“跨度起始对数”和“跨度结束对数”)。

这个模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module 子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。

forward

<来源>

代码语言:javascript
复制
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 以获取详细信息。 什么是输入 ID?
  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在 [0, 1]
    • 1 表示未被“掩码”的标记,
    • 0 表示被“掩码”的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 段标记索引,用于指示输入的第一部分和第二部分。索引选择在 [0, 1]
    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择在范围 [0, config.max_position_embeddings - 1]。 什么是位置 ID?
  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值选择在 [0, 1]
    • 1 表示头部未被“掩码”。
    • 0 表示头部被“掩码”。
  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,可以直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。
  • start_positions(形状为(batch_size,)torch.LongTensor可选)— 用于计算标记跨度的开始位置(索引)的标签。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会计入损失计算。
  • end_positions(形状为(batch_size,)torch.LongTensor可选)— 用于计算标记分类损失的标记跨度的结束位置(索引)的标签。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会计入损失计算。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包括根据配置(BertConfig)和输入的不同元素。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)— 总跨度提取损失是开始和结束位置的交叉熵之和。
  • start_logits(形状为(batch_size, sequence_length)torch.FloatTensor)— 跨度开始分数(SoftMax 之前)。
  • end_logits(形状为(batch_size, sequence_length)torch.FloatTensor)— 跨度结束分数(SoftMax 之前)。
  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。 模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。 注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

BertForQuestionAnswering 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, BertForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("deepset/bert-base-cased-squad2")
>>> model = BertForQuestionAnswering.from_pretrained("deepset/bert-base-cased-squad2")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
'a nice puppet'

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
7.41

TensorFlow 隐藏的 TensorFlow 内容

TFBertModel

class transformers.TFBertModel

<来源>

代码语言:javascript
复制
( config: BertConfig *inputs **kwargs )

参数

  • config(BertConfig) - 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

裸的 Bert 模型变换器输出原始隐藏状态,没有特定的头部。

此模型继承自 TFPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存,调整输入嵌入,修剪头等)。

此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有事项。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为第一个位置参数中的列表,元组或字典。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用诸如model.fit()之类的方法时,您应该可以“轻松使用” - 只需以model.fit()支持的任何格式传递您的输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 一个仅包含input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度不同的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

代码语言:javascript
复制
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions or tuple(tf.Tensor)

参数

  • input_idsnp.ndarraytf.TensorList[tf.Tensor]Dict[str, tf.Tensor]Dict[str, np.ndarray],每个示例的形状必须为(batch_size,sequence_length)) - 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。 什么是输入 ID?
  • attention_mask(形状为(batch_size,sequence_length)np.ndarraytf.Tensor可选) - 避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]中:
    • 对于未被masked的标记为 1,
    • 对于被masked的标记为 0。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size,sequence_length)np.ndarraytf.Tensor可选) - 指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]中选择:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_idsnp.ndarraytf.Tensor,形状为(batch_size, sequence_length)可选)— 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]。 什么是位置 ID?
  • head_masknp.ndarraytf.Tensor,形状为(num_heads,)(num_layers, num_heads)可选)— 用于使自注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]中:
    • 1 表示头部未被遮蔽,
    • 0 表示头部被遮蔽。
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)np.ndarraytf.Tensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions。此参数仅在急切模式下使用,在图模式中将使用配置中的值。
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。此参数仅在急切模式下使用,在图模式中将使用配置中的值。
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式中该值将始终设置为 True。
  • trainingbool可选,默认为False)— 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
  • encoder_hidden_states(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)— 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。
  • encoder_attention_mask(形状为(batch_size, sequence_length)tf.Tensor可选)— 用于避免在编码器输入的填充标记索引上执行注意力。如果模型配置为解码器,则在交叉注意力中使用。掩码值选择在[0, 1]中:
    • 1 表示未被遮蔽的标记,
    • 对于被遮蔽的标记为 0。
  • past_key_values(长度为config.n_layersTuple[Tuple[tf.Tensor]])— 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用了past_key_values,用户可以选择仅输入最后的decoder_input_ids(那些没有将其过去的键值状态提供给此模型的)的形状为(batch_size, 1),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids
  • use_cachebool可选,默认为True)— 如果设置为True,则返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。在训练期间设置为False,在生成期间设置为True

返回

transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(BertConfig)和输入的各种元素。

  • last_hidden_state (形状为(batch_size, sequence_length, hidden_size)tf.Tensor`) — 模型最后一层的隐藏状态序列。
  • pooler_output (形状为(batch_size, hidden_size)tf.Tensor`) — 序列第一个标记(分类标记)的最后一层隐藏状态,经过线性层和 Tanh 激活函数进一步处理。线性层的权重是在预训练期间从下一个句子预测(分类)目标中训练的。 这个输出通常不是输入语义内容的好摘要,通常更好的方法是对整个输入序列的隐藏状态进行平均或池化。
  • past_key_values (List[tf.Tensor], 可选的, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstf.Tensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)。 包含预先计算的隐藏状态(注意力块中的键和值),可以用于加速顺序解码(查看past_key_values输入)。
  • hidden_states (tuple(tf.Tensor), 可选的, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出,一个用于每一层的输出)。 模型每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(tf.Tensor), 可选的, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。 注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
  • cross_attentions (tuple(tf.Tensor), 可选的, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。 解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

TFBertModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在之后调用Module实例而不是这个函数,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, TFBertModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFBertModel.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFBertForPreTraining

class transformers.TFBertForPreTraining

<来源>

代码语言:javascript
复制
( config: BertConfig *inputs **kwargs )

参数

  • config (BertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在预训练期间在顶部使用两个头的 Bert 模型:一个掩码语言建模头和一个下一个句子预测(分类)头。

此模型继承自 TFPreTrainedModel。请查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()等方法时,应该可以“正常工作” - 只需传递您的输入和标签以model.fit()支持的任何格式!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 Keras Functional API 创建自己的层或模型时,有三种可能性可用于收集第一个位置参数中的所有输入张量:

  • 只有input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

代码语言:javascript
复制
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None next_sentence_label: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.models.bert.modeling_tf_bert.TFBertForPreTrainingOutput or tuple(tf.Tensor)

参数

  • input_idsnp.ndarraytf.TensorList[tf.Tensor]Dict[str, tf.Tensor]Dict[str, np.ndarray],每个示例的形状必须为(batch_size, sequence_length))— 输入序列标记在词汇表中的索引。 可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。 什么是 input IDs?
  • attention_mask(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
    • 1 表示未被掩盖的标记,
    • 0 表示被掩盖的标记。

    什么是 attention masks?

  • token_type_ids(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]之间:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是 token type IDs?

  • position_ids(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选)— 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]。 什么是 position IDs?
  • head_mask (np.ndarray or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部无效的掩码。选定的掩码值在 [0, 1] 范围内:
    • 1 表示头部未被掩码,
    • 0 表示头部被掩码。
  • inputs_embeds (np.ndarray or tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的 attentions。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通元组。这个参数可以在急切模式下使用,在图模式下该值将始终设置为 True。
  • training (bool, optional, defaults to `False“) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。
  • labels (tf.Tensor of shape (batch_size, sequence_length), optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]范围内(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]范围内的标记
  • next_sentence_label (tf.Tensor of shape (batch_size,), optional) — 用于计算下一个序列预测(分类)损失的标签。输入应该是一个序列对(参见input_ids文档字符串)。索引应在 [0, 1] 范围内:
    • 0 表示序列 B 是序列 A 的延续,
    • 1 表示序列 B 是一个随机序列。
  • kwargs (Dict[str, any], optional, defaults to {}) — 用于隐藏已被弃用的旧参数的字典。

返回

transformers.models.bert.modeling_tf_bert.TFBertForPreTrainingOutput 或 tuple(tf.Tensor)

一个 transformers.models.bert.modeling_tf_bert.TFBertForPreTrainingOutput 或一个 tf.Tensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置(BertConfig)和输入的各种元素。

  • prediction_logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) — 语言建模头部的预测分数(SoftMax 之前每个词汇标记的分数)。
  • seq_relationship_logits (tf.Tensor of shape (batch_size, 2)) — 下一个序列预测(分类)头部的预测分数(SoftMax 之前的 True/False 继续分数)。
  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — 形状为 (batch_size, sequence_length, hidden_size)tf.Tensor 元组(一个用于嵌入输出 + 一个用于每个层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)tf.Tensor 元组(每个层一个)。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFBertForPreTraining 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module 实例,而不是这个,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFBertForPreTraining

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFBertForPreTraining.from_pretrained("bert-base-uncased")
>>> input_ids = tokenizer("Hello, my dog is cute", add_special_tokens=True, return_tensors="tf")
>>> # Batch size 1

>>> outputs = model(input_ids)
>>> prediction_logits, seq_relationship_logits = outputs[:2]

TFBertModelLMHeadModel

class transformers.TFBertLMHeadModel

<来源>

代码语言:javascript
复制
( config: BertConfig *inputs **kwargs )
call

<来源>

代码语言:javascript
复制
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None encoder_hidden_states: np.ndarray | tf.Tensor | None = None encoder_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False **kwargs ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions or tuple(tf.Tensor)

返回

transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或 tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions 或一个 tf.Tensor 元组(如果传递 return_dict=Falseconfig.return_dict=False)包含根据配置(BertConfig)和输入的不同元素。

  • 损失 (tf.Tensor 的形状为 (n,)可选,当提供 labels 时返回,其中 n 是非掩码标签的数量) — 语言建模损失(用于下一个标记预测)。
  • logits (tf.Tensor 的形状为 (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)tf.Tensor 元组(一个用于嵌入的输出 + 一个用于每个层的输出)。 模型在每个层的输出以及初始嵌入输出的隐藏状态。
  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)tf.Tensor 元组(每个层一个)。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
  • cross_attentions (tuple(tf.Tensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)tf.Tensor 元组(每个层一个)。 解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
  • past_key_values (List[tf.Tensor]可选,当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstf.Tensor 列表,每个张量的形状为 (2, batch_size, num_heads, sequence_length, embed_size_per_head)。 包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码。

encoder_hidden_states(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选):编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。encoder_attention_mask(形状为(batch_size, sequence_length)tf.Tensor可选):避免对编码器输入的填充标记索引执行注意力。如果模型配置为解码器,则在交叉注意力中使用。选择的掩码值在[0, 1]中:

  • 对于未屏蔽的标记,
  • 对于屏蔽的标记为 0。

past_key_values(长度为config.n_layersTuple[Tuple[tf.Tensor]])包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用past_key_values,用户可以选择仅输入最后一个decoder_input_ids(那些没有将其过去键值状态提供给此模型的)的形状为(batch_size, 1),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids。use_cache(bool可选,默认为True):如果设置为True,将返回past_key_values键值状态,并可用于加速解码(请参阅past_key_values)。在训练期间设置为False,在生成标签期间设置为Truetf.Tensornp.ndarray的形状为(batch_size, sequence_length)可选):用于计算交叉熵分类损失的标签。索引应在[0, ..., config.vocab_size - 1]

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, TFBertLMHeadModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFBertLMHeadModel.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits

TFBertForMaskedLM

class transformers.TFBertForMaskedLM

<来源>

代码语言:javascript
复制
( config: BertConfig *inputs **kwargs )

参数

  • config(BertConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部具有语言建模头的 Bert 模型。

该模型继承自 TFPreTrainedModel。查看超类文档以了解库实现的通用方法(例如下载或保存,调整输入嵌入大小,修剪头等)。

该模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典的第一个位置参数。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于有了这种支持,当使用model.fit()等方法时,应该可以“正常工作” - 只需以model.fit()支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可用于收集第一个位置参数中的所有输入张量:

  • 只有一个包含input_ids的张量,没有其他内容:model(input_ids)
  • 按照文档字符串中给定的顺序,长度不同的张量列表:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

代码语言:javascript
复制
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)

参数

  • input_idsnp.ndarraytf.TensorList[tf.Tensor] ``Dict[str, tf.Tensor]Dict[str, np.ndarray],每个示例的形状必须为(batch_size, sequence_length)`)—输入序列标记在词汇表中的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选)—避免在填充令牌索引上执行注意力的掩码。选择的掩码值为[0, 1]
    • 1 表示未被掩码的令牌,
    • 0 表示被掩码的令牌。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选)—段令牌索引,指示输入的第一部分和第二部分。选择的索引为[0, 1]
    • 0 对应于句子 A令牌,
    • 1 对应于句子 B令牌。

    什么是令牌类型 ID?

  • position_ids(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选)—每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)np.ndarraytf.Tensor可选)—用于使自注意力模块的选定头部无效的掩码。选择的掩码值为[0, 1]
    • 1 表示头部未被掩码,
    • 0 表示头部被掩码。
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)np.ndarraytf.Tensor可选)—可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选)—是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • output_hidden_statesbool可选)—是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • return_dictbool可选)—是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。
  • trainingbool可选,默认为`False“)—是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。
  • labels(形状为(batch_size, sequence_length)tf.Tensornp.ndarray可选)— 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]内(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(屏蔽),损失仅计算具有标签在[0, ..., config.vocab_size]中的标记。

返回

transformers.modeling_tf_outputs.TFMaskedLMOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或者一个tf.Tensor元组(如果传递了return_dict=False或者当config.return_dict=False时)包含各种元素,取决于配置(BertConfig)和输入。

  • loss(形状为(n,)tf.Tensor可选,当提供labels时返回,其中 n 是非屏蔽标签的数量)— 掩码语言建模(MLM)损失。
  • logits(形状为(batch_size, sequence_length, config.vocab_size)tf.Tensor)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=True或者当config.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入输出,一个用于每一层输出)。 模型在每一层输出的隐藏状态以及初始嵌入输出。
  • attentionstuple(tf.Tensor)可选,当传递output_attentions=True或者当config.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFBertForMaskedLM 的前向方法,覆盖__call__特殊方法。

尽管前向传递的方法需要在此函数内定义,但应该在之后调用Module实例,而不是这个,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, TFBertForMaskedLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFBertForMaskedLM.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf")
>>> logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)

>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> tokenizer.decode(predicted_token_id)
'paris'
代码语言:javascript
复制
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(float(outputs.loss), 2)
0.88

TFBertForNextSentencePrediction

transformers.TFBertForNextSentencePrediction

<来源>

代码语言:javascript
复制
( config: BertConfig *inputs **kwargs )

参数

  • config(BertConfig)— 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部具有下一个句子预测(分类)头的 Bert 模型。

此模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有信息。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典的第一个位置参数。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有此支持,因此在使用model.fit()等方法时,应该可以“正常工作” - 只需传递您的输入和标签,以任何model.fit()支持的格式传递即可!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可用于收集第一个位置参数中的所有输入张量:

  • 一个仅具有input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度不同的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像将输入传递给任何其他 Python 函数一样传递输入!

call

<来源>

代码语言:javascript
复制
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None next_sentence_label: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFNextSentencePredictorOutput or tuple(tf.Tensor)

参数

  • input_idsnp.ndarraytf.TensorList[tf.Tensor]Dict[str, tf.Tensor]Dict[str, np.ndarray],每个示例的形状必须为(batch_size, sequence_length))— 词汇表中输入序列令牌的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选)— 用于避免在填充令牌索引上执行注意力的掩码。掩码值在[0, 1]中选择:
    • 1 表示头部未被屏蔽,
    • 0 表示令牌被屏蔽。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选)— 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
    • 0 对应于句子 A令牌,
    • 1 对应于句子 B令牌。

    令牌类型 ID 是什么?

  • position_ids(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选)— 每个输入序列令牌的位置索引在位置嵌入中的索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)np.ndarraytf.Tensor可选)— 用于使自注意力模块的选定头部无效的掩码。掩码值在[0, 1]中选择:
    • 1 表示头部未被屏蔽,
    • 0 表示头部被屏蔽。
  • inputs_embedsnp.ndarray或形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。
  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。
  • training (bool可选,默认为`False“) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。

返回

transformers.modeling_tf_outputs.TFNextSentencePredictorOutput 或tuple(tf.Tensor)

transformers.modeling_tf_outputs.TFNextSentencePredictorOutput 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False,则根据配置(BertConfig)和输入包含各种元素。

  • loss (tf.Tensor,形状为(n,)可选,当提供next_sentence_label时返回) — 下一个句子预测损失。
  • logits (tf.Tensor,形状为(batch_size, 2)) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 连续性分数)。
  • hidden_states (tuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入输出,一个用于每一层的输出)。 模型在每一层输出的隐藏状态以及初始嵌入输出。
  • attentions (tuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。 在自注意力头中用于计算加权平均值的注意力权重 softmax 后。

TFBertForNextSentencePrediction 的前向方法,覆盖__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例而不是这个,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFBertForNextSentencePrediction

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFBertForNextSentencePrediction.from_pretrained("bert-base-uncased")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="tf")

>>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0]
>>> assert logits[0][0] < logits[0][1]  # the next sentence was random

TFBertForSequenceClassification

class transformers.TFBertForSequenceClassification

< source >

代码语言:javascript
复制
( config: BertConfig *inputs **kwargs )

参数

  • config (BertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法加载模型权重。

Bert 模型变压器,顶部带有序列分类/回归头(在汇总输出的顶部有一个线性层),例如用于 GLUE 任务。

此模型继承自 TFPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型还是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档,了解与一般用法和行为相关的所有事项。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用model.fit()等方法时,应该“只需工作” - 只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 只有input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像将输入传递给任何其他 Python 函数一样传递输入!

call

<来源>

代码语言:javascript
复制
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)

参数

  • input_ids (np.ndarray, tf.Tensor, List[tf.Tensor] ``Dict[str, tf.Tensor]Dict[str, np.ndarray],每个示例的形状必须为 (batch_size, sequence_length)`) — 输入序列标记在词汇表中的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。 什么是输入 ID?
  • attention_mask (np.ndarray 或形状为 (batch_size, sequence_length)tf.Tensor可选) — 避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]中:
    • 1 用于未掩码的标记,
    • 0 用于掩码的标记。

    什么是注意力掩码?

  • token_type_ids (np.ndarray 或形状为 (batch_size, sequence_length)tf.Tensor可选) — 指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]中选择:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids (np.ndarray 或形状为 (batch_size, sequence_length)tf.Tensor可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)np.ndarraytf.Tensor可选) — 用于使自注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]范围内:
    • 1 表示头部未被masked
    • 0 表示头部被masked
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)np.ndarraytf.Tensor可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为关联向量,而不是模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions。此参数仅在急切模式下使用,在图模式中将使用配置中的值。
  • output_hidden_statesbool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states。此参数仅在急切模式下使用,在图模式中将使用配置中的值。
  • return_dictbool可选) — 是否返回 ModelOutput 而不是普通元组。此参数可以在急切模式中使用,在图模式中该值将始终设置为 True。
  • trainingbool可选,默认为False) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
  • labels(形状为(batch_size,)tf.Tensornp.ndarray可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或tuple(tf.Tensor)

transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个tf.Tensor元组(如果传递return_dict=False或当config.return_dict=False时)包含根据配置(BertConfig)和输入的不同元素。

  • loss(形状为(batch_size,)tf.Tensor可选,当提供labels时返回) — 分类(如果 config.num_labels==1 则为回归)损失。
  • logits(形状为(batch_size, config.num_labels)tf.Tensor) — 分类(如果 config.num_labels==1 则为回归)分数(SoftMax 之前)。
  • hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每层的输出)。 每层模型的隐藏状态加上初始嵌入输出。
  • attentionstuple(tf.Tensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFBertForSequenceClassification 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此之后调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, TFBertForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/bert-base-uncased-yelp-polarity")
>>> model = TFBertForSequenceClassification.from_pretrained("ydshieh/bert-base-uncased-yelp-polarity")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

>>> logits = model(**inputs).logits

>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> model.config.id2label[predicted_class_id]
'LABEL_1'
代码语言:javascript
复制
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFBertForSequenceClassification.from_pretrained("ydshieh/bert-base-uncased-yelp-polarity", num_labels=num_labels)

>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(float(loss), 2)
0.01

TFBertForMultipleChoice

class transformers.TFBertForMultipleChoice

<来源>

代码语言:javascript
复制
( config: BertConfig *inputs **kwargs )

参数

  • config(BertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部具有多选分类头的 Bert 模型(在汇总输出的顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

这个模型继承自 TFPreTrainedModel。查看超类文档以获取库为其所有模型实现的通用方法(例如下载或保存,调整输入嵌入,修剪头等)。

这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入。

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或者
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于有了这种支持,当使用model.fit()等方法时,应该可以“正常工作” - 只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 只有一个包含input_ids的张量,没有其他内容:model(input_ids)
  • 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

代码语言:javascript
复制
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput or tuple(tf.Tensor)

参数

  • input_idsnp.ndarraytf.TensorList[tf.Tensor]Dict[str, tf.Tensor]Dict[str, np.ndarray],每个示例的形状必须为(batch_size, num_choices, sequence_length))— 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()获取详细信息。 什么是输入 ID?
  • attention_mask(形状为(batch_size, num_choices, sequence_length)np.ndarraytf.Tensor可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
    • 对于未屏蔽的标记,
    • 0 对应于已屏蔽的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, num_choices, sequence_length)np.ndarraytf.Tensor可选) — 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, num_choices, sequence_length)np.ndarraytf.Tensor可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)np.ndarraytf.Tensor可选) — 用于使自注意力模块的选定头部失效的掩码。掩码值在[0, 1]中选择:
    • 1 表示头部未屏蔽
    • 0 表示头部已屏蔽
  • inputs_embeds(形状为(batch_size, num_choices, sequence_length, hidden_size)np.ndarraytf.Tensor可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • output_hidden_statesbool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。此参数仅在急切模式下使用,在图模式下将使用配置中的值。
  • return_dictbool可选) — 是否返回一个 ModelOutput 而不是一个普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。
  • trainingbool可选,默认为`False“) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
  • labels(形状为(batch_size,)tf.Tensornp.ndarray可选) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices]中,其中num_choices是输入张量的第二维度的大小。(参见上面的input_ids

返回

transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或一个tf.Tensor元组(如果传递了return_dict=False或当config.return_dict=False时)包括根据配置(BertConfig)和输入的各种元素。

  • loss(形状为*(batch_size, )*的tf.Tensor可选,当提供labels时返回) — 分类损失。
  • logits(形状为(batch_size, num_choices)tf.Tensor) — num_choices 是输入张量的第二维度。(参见上面的input_ids)。 分类分数(SoftMax 之前)。
  • hidden_states (tuple(tf.Tensor), 可选的, 当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每一层的输出)。 模型在每一层输出的隐藏状态以及初始嵌入输出。
  • attentions (tuple(tf.Tensor), 可选的, 当传递output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每一层一个)。 在自注意力头中使用注意力 softmax 后的注意力权重,用于计算加权平均值。

TFBertForMultipleChoice 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在这个函数中定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, TFBertForMultipleChoice
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFBertForMultipleChoice.from_pretrained("bert-base-uncased")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits

TFBertForTokenClassification

class transformers.TFBertForTokenClassification

< source >

代码语言:javascript
复制
( config: BertConfig *inputs **kwargs )

参数

  • config(BertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部带有令牌分类头的 Bert 模型(在隐藏状态输出的顶部有一个线性层),例如用于命名实体识别(NER)任务。

这个模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用model.fit()等方法时,应该“只需工作” - 只需以model.fit()支持的任何格式传递输入和标签!然而,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctionalAPI 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量在第一个位置参数中:

  • 只有一个input_ids的张量,没有其他内容:model(input_ids)
  • 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个与文档字符串中给定的输入名称相关联的包含一个或多个输入张量的字典:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

代码语言:javascript
复制
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFTokenClassifierOutput or tuple(tf.Tensor)

参数

  • input_idsnp.ndarraytf.TensorList[tf.Tensor]Dict[str, tf.Tensor]Dict[str, np.ndarray],每个示例的形状必须为(batch_size, sequence_length))— 输入序列标记在词汇表中的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选)— 避免对填充标记索引执行注意力的掩码。掩码值选定在[0, 1]中:
    • 1 表示未被掩码的标记,
    • 0 表示被掩码的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选)— 指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]中选择:
    • 0 对应于一个句子 A的标记,
    • 1 对应于一个句子 B的标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)np.ndarraytf.Tensor可选)— 用于使自注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]中:
    • 1 表示头部是未被掩码
    • 0 表示头部是被掩码
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)np.ndarraytf.Tensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions。此参数仅在急切模式下使用,在图模式下,将使用配置中的值。
  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。此参数仅在急切模式下使用,在图模式下,将使用配置中的值。
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。此参数可以在急切模式下使用,在图模式下,该值将始终设置为 True。
  • trainingbool可选,默认为False)— 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。
  • labels(形状为(batch_size, sequence_length)tf.Tensornp.ndarray可选)— 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]中。

返回

transformers.modeling_tf_outputs.TFTokenClassifierOutput 或 tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(BertConfig)和输入不同元素。

  • loss (tf.Tensor of shape (n,), 可选的, 其中 n 是未屏蔽标签的数量,当提供labels时返回) — 分类损失。
  • logits (tf.Tensor of shape (batch_size, sequence_length, config.num_labels)) — 分类得分(SoftMax 之前)。
  • hidden_states (tuple(tf.Tensor), 可选的, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(tf.Tensor), 可选的, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

TFBertForTokenClassification 前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, TFBertForTokenClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")
>>> model = TFBertForTokenClassification.from_pretrained("dbmdz/bert-large-cased-finetuned-conll03-english")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )

>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> predicted_tokens_classes
['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] 
代码语言:javascript
复制
>>> labels = predicted_token_class_ids
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)
>>> round(float(loss), 2)
0.01

TFBertForQuestionAnswering

class transformers.TFBertForQuestionAnswering

<来源>

代码语言:javascript
复制
( config: BertConfig *inputs **kwargs )

参数

  • config (BertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

Bert 模型在顶部具有用于提取问答任务的跨度分类头,如 SQuAD(在隐藏状态输出的顶部有一个线性层来计算span start logitsspan end logits)。

此模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以了解所有与一般用法和行为相关的事项。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或
  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有此支持,在使用model.fit()等方法时,应该可以为您“正常工作” - 只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可用于收集第一个位置参数中的所有输入张量:

  • 一个仅包含input_ids的单个张量,没有其他内容:model(input_ids)
  • 一个长度不等的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])
  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

代码语言:javascript
复制
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput or tuple(tf.Tensor)

参数

  • input_idsnp.ndarraytf.TensorList[tf.Tensor]Dict[str, tf.Tensor]Dict[str, np.ndarray],每个示例的形状必须为(batch_size, sequence_length))— 输入序列标记在词汇表中的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.call()和 PreTrainedTokenizer.encode()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]中:
    • 1 表示未被掩盖的标记,
    • 0 表示被掩盖的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选)— 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
    • 0 对应于一个句子 A标记,
    • 1 对应于一个句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)np.ndarraytf.Tensor可选)— 每个输入序列标记在位置嵌入中的位置的索引。在范围[0, config.max_position_embeddings - 1]中选择。 什么是位置 ID?
  • head_mask(形状为(num_heads,)(num_layers, num_heads)np.ndarraytf.Tensor可选)— 用于使自注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]中:
    • 1 表示头部未被掩盖
    • 0 表示头部被掩盖
  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)np.ndarraytf.Tensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权,以便将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。
  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的 attentions。此参数仅在急切模式下使用,在图模式中将使用配置中的值。
  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states。此参数仅在急切模式下使用,在图模式中将使用配置中的值。
  • return_dict (bool, 可选) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式中使用,在图模式中该值将始终设置为 True。
  • training (bool可选,默认为 `False“) — 是否在训练模式中使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
  • start_positions (tf.Tensornp.ndarray,形状为 (batch_size,)可选) — 用于计算标记跨度的起始位置(索引)的标签,以计算令牌分类损失。位置被夹紧到序列的长度 (sequence_length)。序列外的位置不会计入损失计算。
  • end_positions (tf.Tensornp.ndarray,形状为 (batch_size,)可选) — 用于计算标记跨度的结束位置(索引)的标签。位置被夹紧到序列的长度 (sequence_length)。序列外的位置不会计入损失计算。

返回

transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或 tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一个 tf.Tensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包括根据配置(BertConfig)和输入的各种元素。

  • loss (tf.Tensor,形状为 (batch_size, )可选,当提供 start_positionsend_positions 时返回) — 总跨度提取损失是起始和结束位置的交叉熵之和。
  • start_logits (tf.Tensor,形状为 (batch_size, sequence_length)) — 跨度起始分数(SoftMax 之前)。
  • end_logits (tf.Tensor,形状为 (batch_size, sequence_length)) — 跨度结束分数(SoftMax 之前)。
  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)tf.Tensor 元组(一个用于嵌入的输出 + 一个用于每一层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)tf.Tensor 元组(每层一个)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

TFBertForQuestionAnswering 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用 Module 实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, TFBertForQuestionAnswering
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/bert-base-cased-squad2")
>>> model = TFBertForQuestionAnswering.from_pretrained("ydshieh/bert-base-cased-squad2")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)

>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens)
'a nice puppet'
代码语言:javascript
复制
>>> # target is "nice puppet"
>>> target_start_index = tf.constant([14])
>>> target_end_index = tf.constant([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = tf.math.reduce_mean(outputs.loss)
>>> round(float(loss), 2)
7.41

JAX 隐藏 JAX 内容

FlaxBertModel

class transformers.FlaxBertModel

< source >

代码语言:javascript
复制
( config: BertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (BertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。
  • dtype (jax.numpy.dtype, optional, 默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32, jax.numpy.float16 (在 GPU 上) 和 jax.numpy.bfloat16 (在 TPU 上) 中的一个。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的 dtype 进行。 请注意,这只指定了计算的数据类型,不会影响模型参数的数据类型。 如果您希望更改模型参数的数据类型,请参阅 to_fp16() 和 to_bf16()。
  • dtype (jax.numpy.dtype, optional, 默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32, jax.numpy.float16 (在 GPU 上) 和 jax.numpy.bfloat16 (在 TPU 上) 中的一个。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的 dtype 进行。 请注意,这只指定了计算的数据类型,不会影响模型参数的数据类型。 如果您希望更改模型参数的数据类型,请参阅 to_fp16() 和 to_bf16()。

裸的 Bert 模型变压器输出原始隐藏状态,没有任何特定的头部。

此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型还是一个 flax.linen.Module 子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以了解所有与一般用法和行为相关的事项。

最后,此模型支持 JAX 的固有特性,例如:

__call__

< source >

代码语言:javascript
复制
( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。 什么是输入 ID?
  • attention_mask (numpy.ndarray,形状为(batch_size, sequence_length)可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
    • 对于未被masked的标记为 1,
    • 对于被masked的标记为 0。

    什么是注意力掩码?

  • token_type_ids (numpy.ndarray,形状为(batch_size, sequence_length)可选) — 段标记索引,指示输入的第一部分和第二部分。索引选在[0, 1]之间。
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids (numpy.ndarray,形状为(batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选在范围[0, config.max_position_embeddings - 1]内。
  • head_mask (numpy.ndarray,形状为(batch_size, sequence_length)可选) – 用于使注意力模块中选择的头部失效的掩码。掩码值选在[0, 1]之间:
    • 1 表示头部未被masked
    • 0 表示头部被masked
  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(BertConfig)和输入的不同元素。

  • last_hidden_state (jnp.ndarray,形状为(batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列。
  • pooler_output (jnp.ndarray,形状为(batch_size, hidden_size)) — 序列第一个标记(分类标记)的最后一层隐藏状态,经过线性层和 Tanh 激活函数进一步处理。线性层的权重在预训练期间从下一个句子预测(分类)目标中训练。
  • hidden_states (tuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入输出,一个用于每一层的输出)。 模型在每一层输出的隐藏状态以及初始嵌入输出。
  • attentions (tuple(jnp.ndarray), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组。 在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, FlaxBertModel

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertModel.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FlaxBertForPreTraining

class transformers.FlaxBertForPreTraining

<来源>

代码语言:javascript
复制
( config: BertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(BertConfig)— 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)— 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了数据类型,所有计算将使用给定的dtype进行。 请注意,这仅指定了计算的数据类型,并不影响模型参数的数据类型。 如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)— 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了数据类型,所有计算将使用给定的dtype进行。 请注意,这仅指定了计算的数据类型,并不影响模型参数的数据类型。 如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

在预训练期间,Bert 模型顶部有两个头部:一个是masked language modeling头部,另一个是next sentence prediction (classification)头部。

此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型还是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有事项。

最后,此模型支持 JAX 的固有特性,例如:

__call__

<来源>

代码语言:javascript
复制
( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)— 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选) — 用于避免在填充令牌索引上执行注意力的掩码。掩码值选择在[0, 1]中:
    • 1 表示未被“掩盖”的令牌,
    • 0 表示被“掩盖”的令牌。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选) — 段令牌索引,指示输入的第一部分和第二部分。索引选择在[0, 1]中:
    • 0 对应于句子 A令牌,
    • 1 对应于句子 B令牌。

    什么是令牌类型 ID?

  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选) — 每个输入序列令牌在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray,*可选) – 用于使注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]中:
    • 1 表示头部未被“掩盖”,
    • 0 表示头部被“掩盖”。
  • return_dictbool可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput 或tuple(torch.FloatTensor)

一个 transformers.models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包括根据配置(BertConfig)和输入的各种元素。

  • prediction_logits(形状为(batch_size, sequence_length, config.vocab_size)jnp.ndarray) — 语言建模头部的预测分数(SoftMax 之前每个词汇令牌的分数)。
  • seq_relationship_logits(形状为(batch_size, 2)jnp.ndarray) — 下一个序列预测(分类)头部的预测分数(SoftMax 之前的 True/False 连续性分数)。
  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每个层的输出)。 每层模型的输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每个层一个)。 在自注意力头部中用于计算加权平均值的注意力 softmax 之后的注意力权重。

FlaxBertPreTrainedModel的前向方法,覆盖__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, FlaxBertForPreTraining

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertForPreTraining.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

FlaxBertForCausalLM

class transformers.FlaxBertForCausalLM

<来源>

代码语言:javascript
复制
( config: BertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(BertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)— 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype,则所有计算将使用给定的dtype执行。 请注意,这仅指定计算的数据类型,不会影响模型参数的数据类型。 如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)— 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype,则所有计算将使用给定的dtype执行。 请注意,这仅指定计算的数据类型,不会影响模型参数的数据类型。 如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

在 BERT 模型顶部带有语言建模头部(隐藏状态输出顶部的线性层),例如用于自回归任务。

此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型还是flax.linen.Module子类。将其用作常规 Flax 亚麻模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,此模型支持 JAX 的固有特性,例如:

__call__

<来源>

代码语言:javascript
复制
( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)— 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 什么是输入 ID?
  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在 [0, 1] 中选择:
    • 1 对于未被 masked 的标记,
    • 对于被 masked 的标记为 0。

    什么是注意力掩码?

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 段标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:
    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。
  • head_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) -- 用于使注意力模块中选择的头部失效的掩码。掩码值在 [0, 1]` 中选择:
    • 1 表示头部未被 masked
    • 0 表示头部被 masked
  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或者 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或者一个 torch.FloatTensor 元组(如果传递 return_dict=False 或者 config.return_dict=False)包含各种元素,取决于配置(BertConfig)和输入。

  • logits (jnp.ndarray of shape (batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_states (tuple(jnp.ndarray), optional, 当传递 output_hidden_states=True 或者 config.output_hidden_states=True 时返回) — 一个元组,包含形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray(嵌入输出的一个 + 每层输出的一个)。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(jnp.ndarray), optional, 当传递 output_attentions=True 或者 config.output_attentions=True 时返回) — 一个元组,包含形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray(每层一个)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
  • cross_attentions (tuple(jnp.ndarray), optional, 当传递 output_attentions=True 或者 config.output_attentions=True 时返回) — 一个元组,包含形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray(每层一个)。 交叉注意力头中的注意力 softmax 后的注意力权重,用于计算加权平均值。
  • past_key_values (tuple(tuple(jnp.ndarray)), optional, 当传递 use_cache=True 或者 config.use_cache=True 时返回) — 一个元组,包含 jnp.ndarray 元组,长度为 config.n_layers,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型在编码器-解码器设置中使用,则相关。仅在 config.is_decoder = True 时相关。 包含预先计算的隐藏状态(注意力块中的键和值),可以用于加速顺序解码(见 past_key_values 输入)。

FlaxBertPreTrainedModel 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, FlaxBertForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertForCausalLM.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)

>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]

FlaxBertForMaskedLM

class transformers.FlaxBertForMaskedLM

<来源>

代码语言:javascript
复制
( config: BertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (BertConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype,则所有计算将使用给定的数据类型进行。 请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。 如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
  • dtype (jax.numpy.dtype, 可选, 默认为 jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype,则所有计算将使用给定的数据类型进行。 请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。 如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

在顶部带有语言建模头的 Bert 模型。

此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型还是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以了解所有与一般用法和行为相关的事项。

最后,此模型支持 JAX 的固有功能,例如:

__call__

<来源>

代码语言:javascript
复制
( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxMaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids (numpy.ndarray,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 输入 ID 是什么?
  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]中:
    • 1 表示未被“掩盖”的标记,
    • 0 表示被“掩盖”的标记。

    注意力掩码是什么?

  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]中:
    • 0 对应于句子 A标记,
    • 1 对应于句子 B标记。

    令牌类型 ID 是什么?

  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)-- 用于使注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]`中:
    • 1 表示头部未被“掩盖”,
    • 0 表示头部被“掩盖”。
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。

返回

transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包括根据配置(BertConfig)和输入的各种元素。

  • logits(形状为(batch_size, sequence_length, config.vocab_size)jnp.ndarray)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。
  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出+一个用于每个层的输出)。 每层模型的隐藏状态加上初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。 在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。

FlaxBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, FlaxBertForMaskedLM

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertForMaskedLM.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxBertForNextSentencePrediction

class transformers.FlaxBertForNextSentencePrediction

<来源>

代码语言:javascript
复制
( config: BertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(BertConfig)—具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)—计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype,则所有计算将使用给定的dtype执行。 请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。 如果您希望更改模型参数的 dtype,请参阅 to_fp16()和 to_bf16()。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)—计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype,则所有计算将使用给定的dtype执行。 请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。 如果您希望更改模型参数的 dtype,请参阅 to_fp16()和 to_bf16()。

在顶部带有下一个句子预测(分类)头的 Bert 模型。

此模型继承自 FlaxPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。

此模型还是一个flax.linen.Module子类。将其用作常规 Flax 亚麻模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,此模型支持 JAX 的固有功能,例如:

__call__

<来源>

代码语言:javascript
复制
( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxNextSentencePredictorOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)—词汇表中输入序列令牌的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)—用于避免在填充令牌索引上执行注意力的掩码。掩码值选择在[0, 1]之间:
    • 对于未被掩码的令牌,为 1,
    • 0 表示被掩码的令牌。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 段令牌索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
    • 0 对应于句子 A令牌,
    • 1 对应于句子 B令牌。

    什么是令牌类型 ID?

  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 每个输入序列令牌在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)— 用于使注意力模块的选定头部无效的掩码。掩码值在[0, 1]中选择:
    • 1 表示头部未被掩码
    • 0 表示头部被掩码
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。

返回

transformers.modeling_flax_outputs.FlaxNextSentencePredictorOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxNextSentencePredictorOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包括根据配置(BertConfig)和输入的不同元素。

  • logits(形状为(batch_size, 2)jnp.ndarray)— 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 连续性得分)。
  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每一层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每一层一个)。 在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。

FlaxBertPreTrainedModel的前向方法,覆盖__call__特殊方法。

尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, FlaxBertForNextSentencePrediction

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertForNextSentencePrediction.from_pretrained("bert-base-uncased")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="jax")

>>> outputs = model(**encoding)
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1]  # next sentence was random

FlaxBertForSequenceClassification

class transformers.FlaxBertForSequenceClassification

< source >

代码语言:javascript
复制
( config: BertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(BertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)— 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype执行。 请注意,这只指定了计算的数据类型,不影响模型参数的数据类型。 如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)— 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype执行。 请注意,这只指定了计算的数据类型,不影响模型参数的数据类型。 如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

Bert 模型变压器,顶部带有一个序列分类/回归头(在汇总输出的顶部有一个线性层),例如用于 GLUE 任务。

这个模型继承自 FlaxPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载、保存和从 PyTorch 模型转换权重)。

这个模型也是一个flax.linen.Module子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档,了解所有与一般用法和行为相关的事项。

最后,这个模型支持 JAX 的固有特性,比如:

__call__

<来源>

代码语言:javascript
复制
( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)— 输入序列标记在词汇表中的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)— 避免在填充标记索引上执行注意力的蒙版。蒙版值在[0, 1]中选择:
    • 1 用于未被蒙版的标记,
    • 0 用于被蒙版的标记。

    注意力蒙版是什么?

  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:
    • 0 对应于一个句子 A的标记,
    • 1 对应于一个句子 B的标记。

    什么是标记类型 ID?

  • position_ids (numpy.ndarray,形状为(batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
  • head_mask (numpy.ndarray,形状为(batch_size, sequence_length)可选) – 用于使注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]之间:
    • 1 表示头部未被掩盖,
    • 0 表示头部被掩盖。
  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含根据配置(BertConfig)和输入的不同元素。

  • logits (jnp.ndarray,形状为(batch_size, config.num_labels)) — 分类(如果 config.num_labels==1 则为回归)得分(SoftMax 之前)。
  • hidden_states (tuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每一层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例而不是此函数,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, FlaxBertForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertForSequenceClassification.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxBertForMultipleChoice

transformers.FlaxBertForMultipleChoice

<来源>

代码语言:javascript
复制
( config: BertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config (BertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtype (jax.numpy.dtype可选,默认为jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定,所有计算将使用给定的dtype执行。 请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。 如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)— 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了数据类型,所有计算将使用给定的dtype执行。 请注意,这仅指定了计算的数据类型,不会影响模型参数的数据类型。 如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

Bert 模型在顶部带有一个多选分类头部(在汇总输出的顶部有一个线性层和一个 softmax),例如用于 RocStories/SWAG 任务。

该模型继承自 FlaxPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

该模型还是一个flax.linen.Module子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,该模型支持 JAX 的固有功能,例如:

__call__

<来源>

代码语言:javascript
复制
( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, num_choices, sequence_length)numpy.ndarray)— 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, num_choices, sequence_length)numpy.ndarray可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
    • 1 表示未被masked的标记,
    • 0 表示被masked的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, num_choices, sequence_length)numpy.ndarray可选)— 段标记索引,指示输入的第一部分和第二部分。索引选在[0, 1]之间:
    • 0 对应于一个句子 A标记,
    • 1 对应于一个句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, num_choices, sequence_length)numpy.ndarray可选)— 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
  • head_mask(形状为(batch_size, num_choices, sequence_length)numpy.ndarray可选)-- 用于使注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]之间:
    • 1 表示头部未被masked
    • 0 表示头部被masked
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包括根据配置(BertConfig)和输入的各种元素。

  • logits(形状为(batch_size, num_choices)jnp.ndarray)— num_choices是输入张量的第二维。(参见上面的input_ids)。 分类分数(SoftMax 之前)。
  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每个层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。 注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

FlaxBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, FlaxBertForMultipleChoice

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertForMultipleChoice.from_pretrained("bert-base-uncased")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})

>>> logits = outputs.logits

FlaxBertForTokenClassification

class transformers.FlaxBertForTokenClassification

< source >

代码语言:javascript
复制
( config: BertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(BertConfig)—模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)— 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了dtype,则所有计算将使用给定的dtype执行。 请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。 如果您希望更改模型参数的 dtype,请参阅 to_fp16()和 to_bf16()。
  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)— 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype执行。 请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。 如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

Bert 模型在顶部带有一个标记分类头(隐藏状态输出的顶部线性层),例如用于命名实体识别(NER)任务。

此模型继承自 FlaxPreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型还是flax.linen.Module的子类。将其用作常规 Flax 亚麻模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,此模型支持 JAX 的固有特性,例如:

__call__

<来源>

代码语言:javascript
复制
( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxTokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)— 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:
    • 1 表示未被掩码的标记,
    • 0 表示被掩码的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 指示输入的第一部分和第二部分的段标记索引。索引选在[0, 1]之间:
    • 0 对应于句子 A的标记,
    • 1 对应于句子 B的标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)-- 用于使注意力模块的选定头部无效的掩码。掩码值选在[0, 1]之间:
    • 1 表示头部未被掩码
    • 0 表示头部被掩码
  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(BertConfig)和输入的不同元素。

  • logits(形状为(batch_size, sequence_length, config.num_labels)jnp.ndarray) — 分类分数(SoftMax 之前)。
  • hidden_states (tuple(jnp.ndarray), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每个层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentions (tuple(jnp.ndarray), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。 在自注意力头中用于计算加权平均值的注意力 softmax 后的注意力权重。

FlaxBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, FlaxBertForTokenClassification

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertForTokenClassification.from_pretrained("bert-base-uncased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxBertForQuestionAnswering

class transformers.FlaxBertForQuestionAnswering

<来源>

代码语言:javascript
复制
( config: BertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True gradient_checkpointing: bool = False **kwargs )

参数

  • config(BertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
  • dtype (jax.numpy.dtype, optional, 默认为jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype执行。 请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。 如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
  • dtype (jax.numpy.dtype, optional, 默认为jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype执行。 请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。 如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

Bert 模型在顶部具有一个跨度分类头,用于提取式问答任务,如 SQuAD(在隐藏状态输出的顶部进行线性层计算span start logitsspan end logits)。

此模型继承自 FlaxPreTrainedModel。检查超类文档以获取库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型还是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取与一般用法和行为相关的所有事项。

最后,此模型支持内置的 JAX 功能,例如:

__call__

< source >

代码语言:javascript
复制
( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)— 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:
    • 1 用于未被 masked 的标记,
    • 0 用于被 masked 的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 指示输入的第一部分和第二部分的段标记索引。索引选择在[0, 1]中:
    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)-- 用于使注意力模块的选定头部无效的掩码。掩码值在[0, 1]`中选择:
    • 1 表示头部未被 masked
    • 0 表示头部被 masked
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时),包括根据配置(BertConfig)和输入的不同元素。

  • start_logits(形状为(batch_size, sequence_length)jnp.ndarray)— 跨度起始分数(SoftMax 之前)。
  • end_logits(形状为(batch_size, sequence_length)jnp.ndarray)— 跨度结束分数(SoftMax 之前)。
  • hidden_statestuple(jnp.ndarray)可选,当传递了output_hidden_states=True或当config.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每一层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递了output_attentions=True或当config.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每一层一个)。 注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaxBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, FlaxBertForQuestionAnswering

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertForQuestionAnswering.from_pretrained("bert-base-uncased")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")

>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits

jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。

代码语言:javascript
复制
这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的`dtype`执行。

请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。

如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
  • dtype (jax.numpy.dtype, optional, 默认为jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。 这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的dtype执行。 请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。 如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

Bert 模型在顶部具有一个跨度分类头,用于提取式问答任务,如 SQuAD(在隐藏状态输出的顶部进行线性层计算span start logitsspan end logits)。

此模型继承自 FlaxPreTrainedModel。检查超类文档以获取库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)

此模型还是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取与一般用法和行为相关的所有事项。

最后,此模型支持内置的 JAX 功能,例如:

__call__

< source >

代码语言:javascript
复制
( input_ids attention_mask = None token_type_ids = None position_ids = None head_mask = None encoder_hidden_states = None encoder_attention_mask = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None past_key_values: dict = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)numpy.ndarray)— 词汇表中输入序列标记的索引。 可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。 什么是输入 ID?
  • attention_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:
    • 1 用于未被 masked 的标记,
    • 0 用于被 masked 的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 指示输入的第一部分和第二部分的段标记索引。索引选择在[0, 1]中:
    • 0 对应于 句子 A 标记,
    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。
  • head_mask(形状为(batch_size, sequence_length)numpy.ndarray可选)-- 用于使注意力模块的选定头部无效的掩码。掩码值在[0, 1]`中选择:
    • 1 表示头部未被 masked
    • 0 表示头部被 masked
  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通的元组。

返回

transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时),包括根据配置(BertConfig)和输入的不同元素。

  • start_logits(形状为(batch_size, sequence_length)jnp.ndarray)— 跨度起始分数(SoftMax 之前)。
  • end_logits(形状为(batch_size, sequence_length)jnp.ndarray)— 跨度结束分数(SoftMax 之前)。
  • hidden_statestuple(jnp.ndarray)可选,当传递了output_hidden_states=True或当config.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每一层的输出)。 模型在每一层输出的隐藏状态加上初始嵌入输出。
  • attentionstuple(jnp.ndarray)可选,当传递了output_attentions=True或当config.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每一层一个)。 注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaxBertPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

代码语言:javascript
复制
>>> from transformers import AutoTokenizer, FlaxBertForQuestionAnswering

>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = FlaxBertForQuestionAnswering.from_pretrained("bert-base-uncased")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")

>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-06-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • BARThez
    • 概述
      • 资源
        • BarthezTokenizer
          • class transformers.BarthezTokenizer
        • BarthezTokenizerFast
          • class transformers.BarthezTokenizerFast
      • BARTpho
        • 概述
          • 用法示例
            • 用法提示
              • BartphoTokenizer
                • class transformers.BartphoTokenizer
            • BERT
              • 概述
                • 使用提示
                  • 资源
                    • BertConfig
                      • class transformers.BertConfig
                    • BertTokenizer
                      • class transformers.BertTokenizer
                    • BertTokenizerFast
                      • class transformers.BertTokenizerFast
                    • TFBertTokenizer
                      • class transformers.TFBertTokenizer
                    • BERT 特定的输出
                      • class transformers.models.bert.modeling_bert.BertForPreTrainingOutput
                      • class transformers.models.bert.modeling_tf_bert.TFBertForPreTrainingOutput
                      • class transformers.models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput
                    • BertModel
                      • class transformers.BertModel
                    • BertForPreTraining
                      • class transformers.BertForPreTraining
                    • BertLMHeadModel
                      • class transformers.BertLMHeadModel
                    • BertForMaskedLM
                      • class transformers.BertForMaskedLM
                    • BertForNextSentencePrediction
                      • class transformers.BertForNextSentencePrediction
                    • BertForSequenceClassification
                      • class transformers.BertForSequenceClassification
                    • BertForMultipleChoice
                      • class transformers.BertForMultipleChoice
                    • BertForTokenClassification
                      • class transformers.BertForTokenClassification
                    • BertForQuestionAnswering
                      • class transformers.BertForQuestionAnswering
                    • TFBertModel
                      • class transformers.TFBertModel
                    • TFBertForPreTraining
                      • class transformers.TFBertForPreTraining
                    • TFBertModelLMHeadModel
                      • class transformers.TFBertLMHeadModel
                    • TFBertForMaskedLM
                      • class transformers.TFBertForMaskedLM
                    • TFBertForNextSentencePrediction
                      • TFBertForSequenceClassification
                        • TFBertForMultipleChoice
                          • class transformers.TFBertForMultipleChoice
                        • TFBertForTokenClassification
                          • class transformers.TFBertForTokenClassification
                        • TFBertForQuestionAnswering
                          • class transformers.TFBertForQuestionAnswering
                        • FlaxBertModel
                          • class transformers.FlaxBertModel
                        • FlaxBertForPreTraining
                          • class transformers.FlaxBertForPreTraining
                        • FlaxBertForCausalLM
                          • class transformers.FlaxBertForCausalLM
                        • FlaxBertForMaskedLM
                          • class transformers.FlaxBertForMaskedLM
                        • FlaxBertForNextSentencePrediction
                          • class transformers.FlaxBertForNextSentencePrediction
                        • FlaxBertForSequenceClassification
                          • class transformers.FlaxBertForSequenceClassification
                        • FlaxBertForMultipleChoice
                          • FlaxBertForTokenClassification
                            • class transformers.FlaxBertForTokenClassification
                          • FlaxBertForQuestionAnswering
                            • class transformers.FlaxBertForQuestionAnswering
                        相关产品与服务
                        NLP 服务
                        NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
                        领券
                        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档