前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【错误记录】Python 中使用 PySpark 数据计算报错 ( SparkException: Python worker failed to connect back. )

【错误记录】Python 中使用 PySpark 数据计算报错 ( SparkException: Python worker failed to connect back. )

作者头像
韩曙亮
发布2023-10-11 20:14:33
1.4K0
发布2023-10-11 20:14:33
举报
文章被收录于专栏:韩曙亮的移动开发专栏
错误原因 : 没有为 PySpark 配置 Python 解释器 , 将下面的代码卸载 Python 数据分析代码的最前面即可 ;
代码语言:javascript
复制
# 为 PySpark 配置 Python 解释器
import os
os.environ['PYSPARK_PYTHON'] = "Y:/002_WorkSpace/PycharmProjects/pythonProject/venv/Scripts/python.exe"

os.environ['PYSPARK_PYTHON'] 的值设置为 你自己电脑上的 python.exe 绝对路径即可 , 不要按照我电脑上的 Python 解释器路径设置 ;

一、报错信息

Python 中使用 PySpark 数据计算 ,

代码语言:javascript
复制
# 创建一个包含整数的 RDD
rdd = sparkContext.parallelize([1, 2, 3, 4, 5])


# 为每个元素执行的函数
def func(element):
    return element * 10


# 应用 map 操作,将每个元素乘以 10
rdd2 = rdd.map(func)

执行时 , 报如下错误 :

代码语言:javascript
复制
Y:\002_WorkSpace\PycharmProjects\pythonProject\venv\Scripts\python.exe Y:/002_WorkSpace/PycharmProjects/HelloPython/hello.py
23/07/30 21:24:54 WARN Shell: Did not find winutils.exe: java.io.FileNotFoundException: java.io.FileNotFoundException: HADOOP_HOME and hadoop.home.dir are unset. -see https://wiki.apache.org/hadoop/WindowsProblems
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
23/07/30 21:24:54 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
PySpark 版本号 :  3.4.1
23/07/30 21:25:07 ERROR Executor: Exception in task 9.0 in stage 0.0 (TID 9)
org.apache.spark.SparkException: Python worker failed to connect back.
	at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:192)
	at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109)
	at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)
	at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:166)
	at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92)
	at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
	at org.apache.spark.scheduler.Task.run(Task.scala:139)
	at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:748)
Caused by: java.net.SocketTimeoutException: Accept timed out
	at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
	at java.net.DualStackPlainSocketImpl.socketAccept(DualStackPlainSocketImpl.java:135)
	at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:409)
	at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:199)
	at java.net.ServerSocket.implAccept(ServerSocket.java:545)
	at java.net.ServerSocket.accept(ServerSocket.java:513)
	at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:179)
	... 15 more
23/07/30 21:25:07 WARN TaskSetManager: Lost task 9.0 in stage 0.0 (TID 9) (windows10.microdone.cn executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
	at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:192)
	at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109)
	at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)
	at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:166)
	at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92)
	at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
	at org.apache.spark.scheduler.Task.run(Task.scala:139)
	at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:748)
Caused by: java.net.SocketTimeoutException: Accept timed out
	at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
	at java.net.DualStackPlainSocketImpl.socketAccept(DualStackPlainSocketImpl.java:135)
	at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:409)
	at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:199)
	at java.net.ServerSocket.implAccept(ServerSocket.java:545)
	at java.net.ServerSocket.accept(ServerSocket.java:513)
	at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:179)
	... 15 more

23/07/30 21:25:07 ERROR TaskSetManager: Task 9 in stage 0.0 failed 1 times; aborting job
Traceback (most recent call last):
  File "Y:\002_WorkSpace\PycharmProjects\HelloPython\hello.py", line 33, in <module>
    print(rdd2.collect())
  File "Y:\002_WorkSpace\PycharmProjects\pythonProject\venv\lib\site-packages\pyspark\rdd.py", line 1814, in collect
    sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
  File "Y:\002_WorkSpace\PycharmProjects\pythonProject\venv\lib\site-packages\py4j\java_gateway.py", line 1322, in __call__
    return_value = get_return_value(
  File "Y:\002_WorkSpace\PycharmProjects\pythonProject\venv\lib\site-packages\py4j\protocol.py", line 326, in get_return_value
    raise Py4JJavaError(
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 9 in stage 0.0 failed 1 times, most recent failure: Lost task 9.0 in stage 0.0 (TID 9) (windows10.microdone.cn executor driver): org.apache.spark.SparkException: Python worker failed to connect back.
	at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:192)
	at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109)
	at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)
	at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:166)
	at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92)
	at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
	at org.apache.spark.scheduler.Task.run(Task.scala:139)
	at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:748)
Caused by: java.net.SocketTimeoutException: Accept timed out
	at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
	at java.net.DualStackPlainSocketImpl.socketAccept(DualStackPlainSocketImpl.java:135)
	at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:409)
	at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:199)
	at java.net.ServerSocket.implAccept(ServerSocket.java:545)
	at java.net.ServerSocket.accept(ServerSocket.java:513)
	at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:179)
	... 15 more

Driver stacktrace:
	at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2785)
	at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2721)
	at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2720)
	at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
	at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
	at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2720)
	at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1206)
	at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1206)
	at scala.Option.foreach(Option.scala:407)
	at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1206)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2984)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2923)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2912)
	at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
	at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:971)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2263)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2284)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2303)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2328)
	at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1019)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
	at org.apache.spark.rdd.RDD.withScope(RDD.scala:405)
	at org.apache.spark.rdd.RDD.collect(RDD.scala:1018)
	at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:193)
	at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374)
	at py4j.Gateway.invoke(Gateway.java:282)
	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
	at py4j.commands.CallCommand.execute(CallCommand.java:79)
	at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
	at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
	at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Python worker failed to connect back.
	at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:192)
	at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109)
	at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)
	at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:166)
	at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92)
	at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
	at org.apache.spark.scheduler.Task.run(Task.scala:139)
	at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	... 1 more
Caused by: java.net.SocketTimeoutException: Accept timed out
	at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method)
	at java.net.DualStackPlainSocketImpl.socketAccept(DualStackPlainSocketImpl.java:135)
	at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:409)
	at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:199)
	at java.net.ServerSocket.implAccept(ServerSocket.java:545)
	at java.net.ServerSocket.accept(ServerSocket.java:513)
	at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:179)
	... 15 more

[Stage 0:>                                                        (0 + 11) / 12]
Process finished with exit code 1
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

核心报错信息如下 : org.apache.spark.SparkException: Python worker failed to connect back. at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:192) at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:109) at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:124)

二、问题分析


执行的代码如下 :

代码语言:javascript
复制
"""
PySpark 数据处理
"""

# 导入 PySpark 相关包
from pyspark import SparkConf, SparkContext

# 创建 SparkConf 实例对象 , 该对象用于配置 Spark 任务
# setMaster("local[*]") 表示在单机模式下 本机运行
# setAppName("hello_spark") 是给 Spark 程序起一个名字
sparkConf = SparkConf() \
    .setMaster("local[*]") \
    .setAppName("hello_spark")

# 创建 PySpark 执行环境 入口对象
sparkContext = SparkContext(conf=sparkConf)

# 打印 PySpark 版本号
print("PySpark 版本号 : ", sparkContext.version)

# 创建一个包含整数的 RDD
rdd = sparkContext.parallelize([1, 2, 3, 4, 5])


# 为每个元素执行的函数
def func(element):
    return element * 10


# 应用 map 操作,将每个元素乘以 10
rdd2 = rdd.map(func)

# 打印新的 RDD 中的内容
print(rdd2.collect())

# 停止 PySpark 程序
sparkContext.stop()

执行的代码 , 没有任何错误 ;

报错原因是 Python 代码没有准确地找到 Python 解释器 ;

在 PyCharm 中 , 已经配置了 Python 3.10 版本的解释器 , 该解释器可以被 Python 程序识别到 , 但是不能被 PySpark 识别到 ;

在这里插入图片描述
在这里插入图片描述

因此 , 这里需要手动为 PySpark 设置 Python 解释器 ;

设置 PySpark 的 Python 解释器环境变量 ;

三、解决方案


在 PyCharm 中 , 选择 " 菜单栏 / File / Settings " 选项 ,

在这里插入图片描述
在这里插入图片描述

在 Settings 窗口中 , 选择 Python 解释器面板 , 查看 配置的 Python 解释器安装在哪个路径中 ;

在这里插入图片描述
在这里插入图片描述

记录 Python 解释器位置 :

Y:/002_WorkSpace/PycharmProjects/pythonProject/venv/Scripts/python.exe

在这里插入图片描述
在这里插入图片描述

在 代码 的开始位置 , 添加如下代码 :

代码语言:javascript
复制
import os
os.environ['PYSPARK_PYTHON'] = "Y:/002_WorkSpace/PycharmProjects/pythonProject/venv/Scripts/python.exe"

os.environ['PYSPARK_PYTHON'] = 后的 Python.exe 路径换成你自己电脑上的路径即可 ;

修改后的完整代码如下 :

代码语言:javascript
复制
"""
PySpark 数据处理
"""

# 导入 PySpark 相关包
from pyspark import SparkConf, SparkContext
# 为 PySpark 配置 Python 解释器
import os
os.environ['PYSPARK_PYTHON'] = "Y:/002_WorkSpace/PycharmProjects/pythonProject/venv/Scripts/python.exe"

# 创建 SparkConf 实例对象 , 该对象用于配置 Spark 任务
# setMaster("local[*]") 表示在单机模式下 本机运行
# setAppName("hello_spark") 是给 Spark 程序起一个名字
sparkConf = SparkConf() \
    .setMaster("local[*]") \
    .setAppName("hello_spark")

# 创建 PySpark 执行环境 入口对象
sparkContext = SparkContext(conf=sparkConf)

# 打印 PySpark 版本号
print("PySpark 版本号 : ", sparkContext.version)

# 创建一个包含整数的 RDD
rdd = sparkContext.parallelize([1, 2, 3, 4, 5])


# 为每个元素执行的函数
def func(element):
    return element * 10


# 应用 map 操作,将每个元素乘以 10
rdd2 = rdd.map(func)

# 打印新的 RDD 中的内容
print(rdd2.collect())

# 停止 PySpark 程序
sparkContext.stop()

执行结果 :

代码语言:javascript
复制
Y:\002_WorkSpace\PycharmProjects\pythonProject\venv\Scripts\python.exe Y:/002_WorkSpace/PycharmProjects/HelloPython/hello.py
23/07/30 21:39:59 WARN Shell: Did not find winutils.exe: java.io.FileNotFoundException: java.io.FileNotFoundException: HADOOP_HOME and hadoop.home.dir are unset. -see https://wiki.apache.org/hadoop/WindowsProblems
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
23/07/30 21:39:59 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
PySpark 版本号 :  3.4.1
[10, 20, 30, 40, 50]

Process finished with exit code 0
在这里插入图片描述
在这里插入图片描述
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2023-08-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 错误原因 : 没有为 PySpark 配置 Python 解释器 , 将下面的代码卸载 Python 数据分析代码的最前面即可 ;
  • 一、报错信息
  • 二、问题分析
  • 三、解决方案
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档