区块链是一种分布式数据库技术,已经在金融、物流、医疗等领域得到广泛应用,其中共识机制是确保区块链安全性和可靠性的关键机制之一,共识机制可以确保所有节点对于区块链上的数据和交易的一致性,从而防止双重支付和其他恶意行为,本文将详细介绍区块链共识机制的原理、分类和应用并探讨当前共识机制面临的挑战和未来的发展方向。
区块链共识机制是确保区块链安全性和可靠性的重要机制之一,它通过算法和网络节点之间的协议来实现,确保所有节点对于区块链上的数据和交易的一致性,从而防止双重支付和其他恶意行为,共识机制能够防止网络中的节点篡改数据或进行其他恶意行为,从而使得区块链更加安全和可靠,共识机制的实现需要多个节点之间的协作,从而提高了区块链的去中心化程度,在共识机制的作用下节点之间不需要信任任何中心化机构,这使得区块链更加去中心化和民主化,共识机制可以应用于数字货币、智能合约、供应链管理、医疗记录管理等领域,为这些领域的发展和应用提供了可靠的技术支持,共识机制的实现需要借助计算机和网络等数字技术,因此共识机制的发展和应用推动了数字化经济的发展,共识机制的不断优化和创新将为数字经济的发展提供更加可靠和安全的技术支持
共识机制是区块链技术中确保交易安全和可靠性的关键机制之一,它通过算法和网络节点之间的协议来实现对于数据和交易的共识,确保所有节点对于区块链上的数据和交易达成一致,从而防止双重支付和其他恶意行为,共识机制的工作流程包括以下几个步骤:
拜占庭将军问题(The Byzantine Generals Problem)提供了对分布式共识问题的一种情景化描述,由Leslie Lamport等人在1982年首次发表,论文《The Byzantine Generals Problem》同时提供了两种解决拜占庭将军问题的算法:
拜占庭将军问题是分布式系统领域最复杂的容错模型, 它描述了如何在存在恶意行为(如消息篡改或伪造)的情况下使分布式系统达成一致,是我们理解分布式一致性协议和算法的重要基础,在分布式系统中拜占庭容错问题的解决需要满足以下条件:
拜占庭将军问题描述了这样一个场景:
拜占庭帝国(Byzantine Empire)军队的几个师驻扎在敌城外,每个师都由各自的将军指挥,将军们只能通过信使相互沟通,在观察敌情之后他们必须制定一个共同的行动计划,例如:进攻(Attack)或者撤退(Retreat),且只有当半数以上的将军共同发起进攻时才能取得胜利,然而,其中一些将军可能是叛徒,试图阻止忠诚的将军达成一致的行动计划,更糟糕的是负责消息传递的信使也可能是叛徒,他们可能篡改或伪造消息,也可能使得消息丢失
为了更加深入的理解拜占庭将军问题,我们以三将军问题为例进行说明,当三个将军都忠诚时,可以通过投票确定一致的行动方案,图2展示了一种场景, 即General A,B通过观察敌军军情并结合自身情况判断可以发起攻击,而General C通过观察敌军军情并结合自身情况判断应当撤退,最终三个将军经过投票表决得到结果为"进攻:撤退 = 2:1 ", 所以将一同发起进攻取得胜利,对于三个将军而言每个将军都能执行两种决策(进攻或撤退)的情况下, 共存在6中不同的场景,图2是其中一种,对于其他5种场景可简单地推得,通过投票三个将军都将达成一致的行动计划
当三个将军中存在一个叛徒时,将可能扰乱正常的作战计划,图3展示了General C为叛徒的一种场景,他给General A和General B发送了不同的消息,在这种场景下General A通过投票得到"进攻 :撤退=1:2",最终将作出撤退的行动计划,General B通过投票得到"进攻:撤退=2:1",最终将作出进攻的行动计划,结果只有General B发起了进攻并战败
事实上,对于三个将军中存在一个叛徒的场景,想要总能达到一致的行动方案是不可能的,详细的证明可参看Leslie Lamport的论文,此外论文中给出了一个更加普适的结论:如果存在m个叛将,那么至少需要3m+1个将军,才能最终达到一致的行动方案
Leslie Lamport在论文中给出了两种拜占庭将军问题的解决方案,即口信消息型解决方案(A solution with oral message)和签名消息型解决方案(A solution with signed message)
首先,对于口信消息(Oral message)的定义如下:
基于口信消息的定义,我们可知口信消息不能被篡改但是可以被伪造,基于对图3场景的推导,我们知道存在一个叛将时,必须再增加3个忠将才能达到最终的行动一致,为加深理解,我们将利用3个忠将1个叛将的场景对口信消息型解决方案进行推导,在口信消息型解决方案中首先发送消息的将军称为指挥官,其余将军称为副官,对于3忠1叛的场景需要进行两轮作战信息协商,如果没有收到作战信息那么默认撤退,图4是指挥官为忠将的场景,在第一轮作战信息协商中,指挥官向3位副官发送了进攻的消息,在第二轮中,三位副官再次进行作战信息协商,由于General A、B为忠将,因此他们根据指挥官的消息向另外两位副官发送了进攻的消息,而General C为叛将,为了扰乱作战计划,他向另外两位副官发送了撤退的消息,最终Commanding General, General A和B达成了一致的进攻计划,可以取得胜利
下图是指挥官为叛将的场景,第一轮作战信息协商中,指挥官向General A、B发送了撤退的消息,但是为了扰乱General C的决定向其发送了进攻的消息,在第二轮中由于所有副官均为忠将,因此都将来自指挥官的消息正确地发送给其余两位副官,最终所有忠将都能达成一致撤退的计划
如上所述,对于口信消息型拜占庭将军问题,如果叛将人数为m,将军人数不少于3m+1,那么最终能达成一致的行动计划,值的注意的是在这个算法中叛将人数m是已知的,且叛将人数m决定了递归的次数,即叛将数m决定了进行作战信息协商的轮数,如果存在m个叛将,则需要进行m+1轮作战信息协商,这也是上述存在1个叛将时需要进行两轮作战信息协商的原因
对签名消息的定义是在口信消息定义的基础上增加了如下两条:
基于签名消息的定义,我们可以知道签名消息无法被伪造或者篡改,为了深入理解签名消息型解决方案,我们同样以3三将军问题为例进行推导,下图是忠将率先发起作战协商的场景,General A率先向General B、C发送了进攻消息,一旦叛将General C篡改了来自General A的消息,那么General B将将发现作战信息被General C篡改,General B将执行General A发送的消息
图7是叛将率先发起作战协商的场景,叛将General C率先发送了误导的作战信息,那么General A、B将发现General C发送的作战信息不一致,因此判定其为叛将,可对其进行处理后再进行作战信息协商,签名消息型解决方案可以处理任何数量叛将的场景
共识机制是区块链技术中确保交易安全和可靠性的关键机制之一,不同的共识机制采用不同的算法和协议来实现对于数据和交易的共识,以下是常见的共识机制分类:
工作量证明机制(PoW)是最早的共识机制之一,也是比特币等许多区块链系统采用的共识机制,其核心思想是通过计算复杂的哈希函数来竞争记账权
我们以比特币为例来详细介绍POW共识机制,首先来看一下比特币区块的结构图:
区块由区块头(Block Header)和区块体(Block Body)两部分组成,其中区块头主要包含以下信息:
区块体是比特币区块的另一个重要组成部分,包含了当前区块中的所有交易信息,区块体主要包括以下几个部分:
POW(工作量证明)机制需要满足以下三个要素:
A、区块构造
区块结构介绍如上所示,这里我们主要关注以下区块体的Merkle树算法,下图是一个Merkle树的示例,该图中会首先会对4个交易记录L1--L4分别计算hash(L1)--hash(L4),然后计算hash0=hash0-0+hash0-1和hash1=hash1-0+hash1-1,最后计算得出根节点的hash值
B、POW函数
比特币采用的工作量证明函数是SHA-256,该函数常用于数字签名、消息认证等领域,SHA-256函数是从输入数据中生成固定长度的消息摘要,以下是一个使用 Go 实现比特币工作量证明函数的简单示例代码,这里定义了Block结构体和ProofOfWork结构体,ProofOfWork结构体包含了比特币工作量证明算法的实现,在NewBlock()函数中我们调用NewProofOfWork()函数创建一个ProofOfWork对象并调用它的Run()方法来计算符合难度要求的哈希值,在Run()方法中,我们使用SHA-256哈希函数来计算哈希值并不断尝试不同的随机数,直到找到符合难度要求的哈希值,在main()函数中我们创建了一个新的区块并计算了它的哈希值,在实际应用中我们需要将新的区块广播到网络中等待其他节点的验证和确认然后将其添加到自己的区块链上
package main
import (
"bytes"
"crypto/sha256"
"encoding/binary"
"fmt"
"math"
"math/big"
"time"
)
const maxNonce = math.MaxInt64 // 随机数的最大值
type Block struct {
Timestamp int64
Data []byte
PrevBlockHash []byte
Hash []byte
Nonce int
}
func NewBlock(data string, prevBlockHash []byte) *Block {
block := &Block{time.Now().Unix(), []byte(data), prevBlockHash, []byte{}, 0}
pow := NewProofOfWork(block)
nonce, hash := pow.Run()
block.Hash = hash[:]
block.Nonce = nonce
return block
}
type ProofOfWork struct {
block *Block
target *big.Int
}
func NewProofOfWork(b *Block) *ProofOfWork {
target := big.NewInt(1)
target.Lsh(target, uint(256-bits))
pow := &ProofOfWork{b, target}
return pow
}
func (pow *ProofOfWork) prepareData(nonce int) []byte {
data := bytes.Join(
[][]byte{
pow.block.PrevBlockHash,
pow.block.Data,
IntToHex(pow.block.Timestamp),
IntToHex(int64(bits)),
IntToHex(int64(nonce)),
},
[]byte{},
)
return data
}
func (pow *ProofOfWork) Run() (int, []byte) {
var hashInt big.Int
var hash [32]byte
nonce := 0
fmt.Printf("挖矿开始,目标哈希值:%x\n", pow.target.Bytes())
for nonce < maxNonce {
data := pow.prepareData(nonce)
hash = sha256.Sum256(data)
fmt.Printf("\r%x", hash)
hashInt.SetBytes(hash[:])
if hashInt.Cmp(pow.target) == -1 {
fmt.Printf("\n")
break
} else {
nonce++
}
}
return nonce, hash[:]
}
func (pow *ProofOfWork) Validate() bool {
var hashInt big.Int
hash := sha256.Sum256(pow.prepareData(pow.block.Nonce))
hashInt.SetBytes(hash[:])
return hashInt.Cmp(pow.target) == -1
}
func IntToHex(n int64) []byte {
buf := new(bytes.Buffer)
err := binary.Write(buf, binary.BigEndian, n)
if err != nil {
fmt.Println("IntToHex error:", err)
}
return buf.Bytes()
}
func main() {
prevBlockHash := []byte("prevBlockHash")
data := "Hello, World!"
block := NewBlock(data, prevBlockHash)
fmt.Printf("挖矿完成,区块哈希值:%x\n", block.Hash)
}
C、难度值计算
比特币的难度值计算公式是一个动态调整的算法,旨在保持比特币网络的区块产出速度稳定在每10分钟产生一个区块左右,比特币的难度值计算公式如下:
new_target = old_target * (actual_time / target_time)
参数说明:
在比特币中target_time固定为2016个区块产生的总时间,即14天(10分钟*2016),实际上比特币网络的区块产出速度并不总是稳定的,因此需要根据实际情况动态调整难度目标值,而为了保持区块产出速度稳定在每10分钟一个区块左右,比特币网络会根据前2016个区块的实际产出时间来计算新的难度目标值,如果实际产出时间比理论上的目标时间短,即区块产出速度过快,那么新的难度目标值将会增加,使得下一个难度周期中的区块难度增加,如果实际产出时间比理论上的目标时间长,即区块产出速度过慢,那么新的难度目标值将会减少,使得下一个难度周期中的区块难度降低,以下是一个根据前2016个区块实际产出时间计算新难度目标值的示例:
假设前2016个区块总共产出的时间为14天2小时30分钟(即1201500 秒),而理论上应该产生这些区块的时间为14天(即1209600秒),则根据难度计算公式,新的难度目标值应该为
new_target = old_target * (actual_time / target_time)
= old_target * (1201500 / 1209600)
这里的old_target是上一个难度周期的难度目标值,如果上一个难度周期的难度目标值为1000000000000(即一个十六进制数,大约是2的40 次方),则新的难度目标值应该为
new_target = 1000000000000 * (1201500 / 1209600)
= 986408071.869
备注:在实际应用中新的难度目标值会取整到最接近的整数并转换为一个十六进制数,作为下一个难度周期的难度目标值。
工作量证明机制的主要特征是请求方需要做一定难度的工作计算出一个结果,验证方却很容易通过验证结果是否满足要求来确认客户端是不是做了相应的工作,这种方案的一个核心特征是不对称性,即工作对于请求方而言是有一定难度的,对于验证方而言则是易于验证的。
假如对一个给定的字符串"Hello world~",系统设定的工作量要求是在这个字符串后面添加一个叫作Nonce的随机整数值,对变更后(添加了Nonce)的字符串进行SHA256哈希运算,如果得到的哈希结果(以十六进制的形式表示)是以"0000"开头的则完成了工作量,可以通过验证,而在验证开始之前,请求方并不知道到底哪个数值添加后可以达到前4位为"0000"的工作量证明目标,所以只有采用笨办法即从0开始不断地递增变动Nonce值并对每个变动后的新字符串进行SHA256哈希运算,再对照哈希运算结果与目标要求,直到找到那个随机数(Nonce)为止,粗略估计大概需要经过4251次计算才能找到恰好前4位为0的哈希散列,而当这个结果被计算出来后,请求方向验证方告知结果:在"Hello world~"后面附加上4250可以使SHA256的前4位为"0000",验证方无须再从0开始验证,它可以直接应用"Hello world!4250"进行SHA256计算,发现请求方的计算结果确实满足了要求,于是验证得以通过
POW(Proof of Work)工作量证明是一种常用于区块链技术中的共识算法,它的主要流程可以分为以下几步:
POW工作量证明共识记账流程如下:
大概时序图如下所示:
POS(Proof of Stake)共识机制是一种区块链网络中的共识算法,它与POW(Proof of Work)共识机制不同,POW需要矿工进行计算,消耗大量的能源,而POS则是根据持有的数字货币数量来决定下一个区块的生成权,具体来说就是POS共识机制会选出一定数量的验证者,这些验证者需要在网络中拥有一定数量的数字货币,这些数字货币可以作为抵押品,确保验证者不会恶意行为,验证者将自己的数字货币抵押到网络中然后获得产生新区块的权利,在选出验证者之后,他们会轮流产生新的区块,每个验证者的权利是根据他们持有的数字货币数量来决定的,如果验证者违反规则,他们的数字货币会被没收
PoS机制自创立以来,已经经历了3个版本的修订:
另外持币少的人与持币多的人相比,只要全部时间在线参与权益交易就可以得到比例更高的区块创建利息奖励,比如:持币多的人可能得到1%的利息奖励,而持币少的人由于参与的时间长,可能得到2%甚至更高比例的利息,从而激励人们多多在线,这种机制也使得交易费用的分配更加分散化,避免"富者更富,穷者更穷"的中心化趋势
POS(Proof of Stake)共识机制是一种区块链技术中的共识算法,它的工作流程可以分为以下几步:
下面是一个简单的示意图,展示了POS共识机制的工作流程:
+-----------------+ +----------------+
| 抵押加密货币 | --------->| 随机选择权益地址|
+-----------------+ +----------------+
|
|
v
+-----------------+ +----------------+
| 出块和验证 |<--------- | 奖励和手续费 |
+-----------------+ +----------------+
| -
| -
v -
+-----------------+ > +----------------+
| 下一个区块 | | 惩罚机制 |
+-----------------+ +----------------+
在这个示意图中节点需要先抵押一定数量的加密货币作为权益,然后等待随机选择的权益地址。如果节点被选中成为出块者,它需要验证交易记录的合法性,然后将这些交易记录打包成一个新的区块,其他节点会对这个区块进行验证,如果验证通过,这个区块将会被添加到区块链上并且出块者可以获得一定数量的加密货币作为奖励,如果节点发布了不合法的交易记录或区块或者没有及时参与网络的验证和管理,它的权益将会被扣除一定数量的加密货币,最后系统会选择一个新的权益地址,继续下一个区块的出块和验证过程
DPOS(Delegated Proof of Stake)共识机制是一种基于POS共识机制的改进版,它最早出现在BitShares中,相比于传统的POS共识机制,DPOS 共识机制具有以下优势:
DPOS共识机制是一种基于POS共识机制的改进版,它在效率、安全性和可参与性等方面都有很大的优势,目前许多区块链项目都采用了DPOS共识机制,例如:BitShares、EOS、TRON等
在DPOS(Delegated Proof of Stake)共识机制中,委托者可以通过以下方式来选择和更换见证人:
在选择和更换见证人的过程中,委托者需要考虑以下因素:
在更换见证人的过程中,委托者需要注意以下事项:
DPOS(Delegated Proof of Stake)共识机制的工作流程如下:
下面是一个简单的示意图,展示了DPOS共识机制的工作流程:
+---------------------+
| 委托者(抵押加密货币) |
+----------+----------+
|
V
+----------+----------+
| 见证人(出块) |
+----------+----------+
|
V
+--------------------------+
| 其他节点(验证和同步区块)|
+--------------------------+
在这个示意图中,委托者首先需要抵押一定数量的加密货币作为权益,然后可以将它们的权益委托给其他节点,这些被委托的节点即为"见证人",见证人需要验证交易记录的合法性并将这些交易记录打包成一个新的区块,然后将这个区块广播给其他节点,其他节点会对这个区块进行验证和同步,如果验证通过则这个区块将会被添加到区块链上,见证人可以获得一定数量的加密货币作为奖励,同时也需要承担一定的责任和风险
POA(Proof of Authority)共识机制是一种基于权威证明的共识机制,它最早出现在Ethereum Kovan测试网络中,相比于传统的POW(Proof of Work)和POS(Proof of Stake)共识机制,POA共识机制具有以下特点:
在POA(Proof of Authority)共识机制中,验证人的选举方法主要有以下几种:
在实际应用中,POA系统通常会采用多种选举方法的组合,从而确保验证人的质量和可靠性,例如:在初始阶段可以采用手动选举,然后逐渐过渡到随机选举或轮流选举并且在选举过程中也可以考虑节点的声誉和贡献等因素,同时POA系统还可以采用一些技术手段来防止验证人被篡改或者受到攻击,例如:多签名技术和防作弊算法等
POA共识机制的工作流程如下:
下面是一个简单的示意图,展示了POA共识机制的工作流程:
+---------------------+
| 验证人(权威验证) |
+----------+----------+
|
V
+----------+----------+
| 区块打包和广播 |
+----------+----------+
|
V
+--------------------------+
| 其他节点(验证和同步区块)|
+--------------------------+
在这个示意图中,验证人首先需要被选定并具有权威和信誉,然后它们需要验证交易记录的合法性并将这些交易记录打包成一个新的区块,其他节点会对这个区块进行验证和同步,如果验证通过,这个区块将会被添加到区块链上。验证人可以获得一定数量的加密货币作为奖励,同时也需要承担一定的责任和风险
共识机制作为区块链技术的核心组成部分,扮演着确保网络安全和可靠性的重要角色,然而共识机制也面临着一些挑战和问题,未来需要进一步的研究和发展,以下是共识机制未来的几个挑战:
共识机制作为区块链技术的核心组成部分,需要不断地研究和发展以应对未来的挑战和需求,未来共识机制需要更加注重可扩展性、安全性、公平性、环境友好性和可持续性等方面的问题以实现区块链技术的长期发展和应用落地
区块链共识机制是区块链技术的核心组成部分,它在保证网络安全和可靠性的同时也带来了诸多挑战和机遇,未来随着区块链技术的不断发展和应用场景的扩展,共识机制将会面临更多的挑战和需求,因此我们需要不断地研究和发展新的共识机制以应对未来的需求和挑战,相信在全球各地区块链技术和共识机制的不断创新和发展下,未来的区块链世界将会变得更加安全、公正、高效和可持续