前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >强化学习技巧五:numba提速python程序

强化学习技巧五:numba提速python程序

作者头像
汀丶人工智能
发布2022-12-21 15:05:59
1K0
发布2022-12-21 15:05:59
举报
文章被收录于专栏:NLP/KG

numba是一款可以将python函数编译为机器代码的JIT编译器,经过numba编译的python代码(仅限数组运算),其运行速度可以接近C或FORTRAN语言。

numba使用情况

  • 使用numpy数组做大量科学计算时
  • 使用for循环时

1.numba使用

导入numpy、numba及其编译器

代码语言:javascript
复制
import numpy as np
import numba
from numba import jit

传入numba装饰器jit,编写函数

代码语言:javascript
复制
# 使用numba的情况
@jit(nopython=True)
def t():
    x = 0
    for i in np.arange(5000):
        x += i
    return x
%timeit(t())

nopython = True选项要求完全编译该函数(以便完全删除Python解释器调用),否则会引发异常。这些异常通常表示函数中需要修改的位置,以实现优于Python的性能。强烈建议您始终使用nopython = True。

2.不适用场景

numba目前只支持Python原生函数和部分Numpy函数,其他场景下无效。

代码语言:javascript
复制
from numba import jit
import pandas as pd

x = {'a': [1, 2, 3], 'b': [20, 30, 40]}

@jit
def use_pandas(a): # Function will not benefit from Numba jit
    df = pd.DataFrame.from_dict(a) # Numba doesn't know about pd.DataFrame
    df += 1                        # Numba doesn't understand what this is
    return df.cov()                # or this!

print(use_pandas(x))

上述代码中使用了Pandas,而Pandas并不是原生代码,而是更高层次的封装,Numba不能理解pandas内部在做什么,所以无法对其加速。

而一些常用的机器学习框架,比如scikit-learn, tensorflow, pyrorch等,已经做了大量的优化,不适合再使用Numba做加速。

可以简单总结为,Numba不支持:

  • pandas
  • scikit-learn, tensorflow, pyrorch
  • try…except 异常处理
  • with 语句
  • yield from

Numba有两种模式:

@jit:object模式:上图左侧 Numba的@jit装饰器会尝试优化代码,如果发现不支持(比如pandas等),那么Numba会继续使用Python原来的方法去执行该函数。

@jit(nopython=True)或者@njit:nopython模式:上图右侧 强制加速,不会进入上图左侧流程,只进行右侧流程,如果编译不成功,就抛出异常。

Numba使用了LLVMNVVM技术,此技术将Python等解释型语言直接翻译成CPUGPU可执行的机器码

那如何决定是否使用Numba呢?

Numba的@jit装饰器就像自动驾驶,用户不需要关注到底是如何优化的,Numba去尝试进行优化,如果发现不支持,那么Numba会继续用Python原来的方法去执行该函数,即图 Python解释器工作原理中左侧部分。这种模式被称为object模式。前文提到的pandas的例子,Numba发现无法理解里面的内容,于是自动进入了object模式。object模式还是和原生的Python一样慢,还有可能比原来更慢。

Numba真正牛逼之处在于其nopython模式。将装饰器改为@jit(nopython=True)或者@njit,Numba会假设你已经对所加速的函数非常了解,强制使用加速的方式,不会进入object模式,如编译不成功,则直接抛出异常。nopython的名字会有点歧义,我们可以理解为不使用很慢的Python,强制进入图 Python解释器工作原理中右侧部分。

实践上,一般推荐将代码中计算密集的部分作为单独的函数提出来,并使用nopython方式优化,这样可以保证我们能使用到Numba的加速功能。其余部分还是使用Python原生代码,在计算加速的前提下,避免过长的编译时间。(有关编译时间的问题下节将会介绍。)Numba可以与NumPy紧密结合,两者一起,常常能够得到近乎C语言的速度。尽管Numba不能直接优化pandas,但是我们可以将pandas中处理数据的for循环作为单独的函数提出来,再使用Numba加速。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021-07-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1.numba使用
  • 2.不适用场景
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档