摔倒检测跌倒识别检测基于YOLOv5技术来实现的图像识别,是计算机视觉的基础算法,例如VGG,GoogLeNet,ResNet等,这类算法主要是判断图片中目标的种类。目标检测算法和图像识别算法类似,但是目标检测算法不仅要识别出图像中的物体,还需要获得图像中物体的大小和位置,使用坐标的形式表示出来。
mmpose不同于yolo,SSD等目标检测模型,在视频中进行关节点检测的速度要小于目标检测,即使在边缘计算的盒子上进行部署,也很难对人群进行大规模的关键点检测和判断,因此关键点检测常用于智能运动检测等小规模人群场景,图上所示是先使用yolo进行预判断
openpose和其他关键点检测模型只是给出人体各个器官的点位坐标,而具体需要识别什么,就要自行通过这些坐标进行算法设计,比如引体向上计数,可以通过判断头部节点与肘部节点的坐标进行判断计数,对于摔倒,可以通过判断视频前后帧的头部,腰部等关节点进行检测,判断是否摔倒。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。