大家好,又见面了,我是你们的朋友全栈君。
题目:将一个正整数分解质因数。例如:输入90,打印出90=233*5。 程序分析:对n进行分解质因数,应先找到一个最小的质数k,然后按下述步骤完成: (1)如果这个质数恰等于n,则说明分解质因数的过程已经结束,打印出即可。 (2)如果n != k,但n能被k整除,则应打印出k的值,并用n除以k的商,作为新的正整数你n,重复执行第一步。 (3)如果n不能被k整除,则用k+1作为k的值,重复执行第一步。
解题代码:
import java.util.Scanner;
public class Test10 {
public static void main(String[] args) {
Scanner read=new Scanner(System.in);
while(read.hasNext()){
int n=read.nextInt();
fenjiezhiyinshu(n);
}
}
public static void fenjiezhiyinshu(int n ){
for(int k=2;k<=n;k++){
if(n==k) {
System.out.println("质因数包括:"+k);
break;}
else if (n%k==0) {
System.out.println("质因数包括:"+k);
n=n/k;}
}
}
}
程序运行结果:
题目:输入两个正整数m和n,求其最大公约数和最小公倍数。 分析:在循环中,只要除数不等于0,用较大数除以较小的数,将小的一个数作为下一轮循环的大数,取得的余数作为下一轮循环的较小的数,如此循环直到较小的数的值为0,返回较大的数,此数即为最大公约数,最小公倍数为两数之积除以最大公约数。
解题代码:
import java.util.*;
public class Test11{
public static void main(String[] args) {
Scanner read =new Scanner(System.in);
while(read.hasNext()){
int a=read.nextInt(),b=read.nextInt();
int Maxyueshu= gongyinshu(a, b);
System.out.println("您好:您输入的数字"+a+"和"+b+"的最小公因数为:"+Maxyueshu);
System.out.println("您好:您输入的数字"+a+"和"+b+"的最大公倍数为:"+a*b/Maxyueshu);
}
}
public static int gongyinshu(int a,int b) {
if(a<b) {
b+=a;
a=b-a;
b=b-a;
}
while(b!=0) {
if(a==b)
return a;
int x=b;
b=a%b;
a=x;
}
return a;
}
}
程序运行结果:
题目:一个数如果恰好等于它的因子之和,这个数就称为 “完数 “。例如6=1+2+3, 找出N以内的所有完数。 解题代码:
import java.util.*;
public class Test12{
public static void main(String[] args){
Scanner read=new Scanner(System.in);
while(read.hasNext()){
int N=read.nextInt();
for(int i=1;i<=N;i++){
int s=0;
for(int j=1;j<=i/2;j++){
//此处循环i/2次,提高效率。
if(i % j==0){
s=s+j;
if(s==i)
System.out.print(i+" ");
}
}
}
System.out.println("\n上行数据为"+N+"以内所有的完数");
}
}
}
总结:第二个for循环,即代码第九行,循环i/2次,提高效率。减少循环次数。 程序运行结果:
【程序13】
题目:输入一行字符,分别统计出其中英文字母、空格、数字和其它字符的个数。 解题代码:
import java.util.*;
public class Test13{
public static void main(String[] args) {
Scanner read=new Scanner(System.in);
while(read.hasNext()){
int zimucount=0;
int spacecount=0;
int numcount=0;
int othercount=0;
String S=read.nextLine();
for(char c:S.toCharArray()) {
if(Character.isLetter(c)) {
zimucount++;
}else if(Character.isDigit(c)) {
numcount++;
}else if(Character.isSpaceChar(c)){
spacecount++;
}else {
othercount++;
}
}
System.out.println("您好:您输入的字符串:"+S+"中\n英文字母个数为:"+zimucount+"\n空格数为"
+spacecount+"\n阿拉伯数字个数为"+numcount+"\n其它字符个数为:"+othercount);
}
}
}
程序运行结果:
题目:一个整数,它加上100后是一个完全平方数,加上168又是一个完全平方数,请问该数是多少?
程序分析:先将该数加上100后再开方,再将该数加上268后再开方,如果开方后的结果满足条件,即是结果。 因为不知到循环次数,故for循环判断语句恒为真,找到即跳出循环,时间最优,因为某数最小加100,所以循环变量i的初始值应为-100。
解题代码:
public class Test14 {
public static void main(String[] args) {
for(int i=-100;true;i++) {
if(Math.sqrt(i+100)%1==0&&Math.sqrt(i+168)%1==0) {
System.out.println(i);
break;}
}
}
}
程序运行结果:
题目:查找两个字符串a,b中的最长公共子串。若有多个,输出在较短串中最先出现的那个。 1.暴力匹配算法 解题代码:
import java.util.*;
public class Test15{
public static void main(String[] args){
Scanner in = new Scanner(System.in);
while(in.hasNext()){
String s1 = in.nextLine();
String s2 = in.nextLine();
String max = s1.length() >= s2.length()?s1:s2;
String min = s1.length() >= s2.length()?s2:s1;
int l = 0;
String s ="";
for(int i=0;i<max.length();i++){
for(int j=i+1;j<=min.length();j++){
if(max.contains(min.substring(i,j)) && j-i>l){
l=j-i;
s=min.substring(i,j);
}
}
}
System.out.println("您好:你所输入的字符串:"+s1+"与字符串"+s2+"中最先出现的最长公共子串为:\n"+s);
}
}
}
程序运行结果:
用暴力方法解决的话就会有大量的回溯,每次只移动一位,若是不匹配,移动到下一位接着判断,浪费大量时间。 1.KMP算法 未完待续……
解题代码:
import java.util.*;
public class Test16 {
public static void main (String[]args){
int [] yuetianshu={
0,0,31,59,90,120,151,181,212,243,273,304,334};
Scanner read= new Scanner(System.in);
System.out.println("请输入年,月,日");
while(read.hasNext()){
int year=read.nextInt(),month=read.nextInt(),day=read.nextInt(),sum=0;
sum=yuetianshu[month]+day; /*再加上某天的天数*/
if((year%400==0||(year%4==0&&year%100!=0))&& month>2)/*判断是不是闰年*/
sum++;
System.out.println("您好:您所输入的"+year+"年"+month+"月"+day+"日是当年的第"+sum+"天。");
}
}
}
题目:输入某年某月某日,判断这一天是这一年的第几天? 程序运行结果:
题目:求1+2!+3!+…+N!的和。 解题代码:
import java.util.*;
public class Test17{
public static void main(String[] args) {
Scanner read=new Scanner(System.in);
while(read.hasNext()){
int N=read.nextInt();
long sum=0,ver=1;
for(int i=1;i<=N;i++) {
ver=ver*i;
sum+=ver;
}
System.out.println("1~"+N+"的阶乘和为:"+sum);
}
}
}
程序运行结果:
题目:输入一个int型整数,按照从右向左的阅读顺序,返回一个不含重复数字的新的整数。 解题代码:直接暴力解决。
import java.util.*;
public class Test18{
public static void main(String[] args){
Scanner in=new Scanner(System.in);
while(in.hasNext()){
String str=in.next();
String a=str.substring(str.length()-1);
for(int i=str.length()-2;i>=0;i--){
if(!a.contains(str.substring(i,i+1)))
a+=str.substring(i,i+1);
}
System.out.println(a);
}
}
}
程序运行结果:
题目:经典实例蒙特卡罗π。
基本算法思想: 概率算法执行的基本过程如下: (1)将问题转化为相应的几何图形S, S 的面积是容易计算的,问题的结果往往对应几何图形中某一部分S1 的面积。 (2)然后,向几何图形中随机撒点。 (3)统计几何图形S 和 S1 中的点数。根 据 S 的面积和S1 面积的关系以及各图形中的点数来计算得到结果。 (4) 判断上述结果是否在需要的精度之内,如果未达到精度则执行步骤(2)。如果达到精度,则输出近似结果。
概率算法大致分为如下4 种形式: • 数值概率算法。 • 蒙特卡罗 (MonteCarlo)算法。 • 拉斯维加斯 (Las Vegas)算法。 • 舍伍德 (Sherwood)算法。
题目:经典实例蒙特卡罗π
如果均匀的在正方形中撒点,落入阴影部分的概率为π/4 根据概率统计的规律,只要点足够多就可以得到非常近似的结果
解题代码:
import java.util.*;
public class Test18Pi{
public static void main(String[] args) {
Scanner read=new Scanner(System.in);
while(read.hasNext()){
long n=read.nextLong();
System.out.println("根据您的输入计算获得PI的近似值为:"+getPI(n));}}
public static double getPI(long n){
double x,y;
int sum = 0;
for(int i = 0;i<n*n;i++){
x = Math.random();
y = Math.random();
if(x*x+y*y<=1){
sum++;
}
}
return sum*4.0/n/n;
}
}
程序运行结果:
API中的重要类(一): https://blog.csdn.net/Veer_c/article/details/103803248 API中的重要类(二): https://blog.csdn.net/Veer_c/article/details/103807515 API中的重要类(三): https://blog.csdn.net/Veer_c/article/details/103808054
Java中的IO流(一): https://blog.csdn.net/Veer_c/article/details/103833045 Java中的IO流(二): https://blog.csdn.net/Veer_c/article/details/103833423 Java中的IO流(三): https://blog.csdn.net/Veer_c/article/details/103833811
Java多线程(一): https://blog.csdn.net/Veer_c/article/details/103842078 Java多线程(二): https://blog.csdn.net/Veer_c/article/details/103842263 Java多线程(三): https://blog.csdn.net/Veer_c/article/details/103842317 Java多线程(四): https://blog.csdn.net/Veer_c/article/details/103842602
网络编程上(UDP): https://blog.csdn.net/Veer_c/article/details/103843591 网络编程下(TCP): https://blog.csdn.net/Veer_c/article/details/103843825
MySQL数据库(一): https://blog.csdn.net/Veer_c/article/details/103844059 MySQL数据库(二): https://blog.csdn.net/Veer_c/article/details/103844537 MySQL数据库(三): https://blog.csdn.net/Veer_c/article/details/103844739
JDBC技术(一): https://blog.csdn.net/Veer_c/article/details/103845176 JDBC技术(二): https://blog.csdn.net/Veer_c/article/details/103879890 JDBC技术(三): https://blog.csdn.net/Veer_c/article/details/103880021 JDBC技术(四): https://blog.csdn.net/Veer_c/article/details/103882264
HTML的基础框架(一): https://blog.csdn.net/Veer_c/article/details/103882385 HTML的基础框架(二): https://blog.csdn.net/Veer_c/article/details/103882684
CSS入门(一) https://blog.csdn.net/Veer_c/article/details/103882856 CSS入门(二): https://blog.csdn.net/Veer_c/article/details/103883102
JavaScript实用案例与常见问题(一): https://blog.csdn.net/Veer_c/article/details/103894959 JavaScript实用案例及常见问题(二): https://blog.csdn.net/Veer_c/article/details/103895166
BOM编程详解: https://blog.csdn.net/Veer_c/article/details/103895433
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/156647.html原文链接:https://javaforall.cn