前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >像素矢量量化

像素矢量量化

作者头像
裴来凡
发布2022-05-29 10:07:44
5250
发布2022-05-29 10:07:44
举报
文章被收录于专栏:图像处理与模式识别研究所
代码语言:javascript
复制
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import pairwise_distances_argmin
from skimage.io import imread
from sklearn.utils import shuffle
from skimage import img_as_float
from time import time
img=imread("C:/Users/xpp/Desktop/Lena.png")
plt.figure(1),plt.clf()
ax=plt.axes([0,0,1,1])
plt.axis('off'),plt.title('Original image (%d colors)' %(len(np.unique(img)))),plt.imshow(img)
n_colors=64
img=np.array(img,dtype=np.float64)/255
w,h,d=original_shape=tuple(img.shape)
assert d==3
image_array=np.reshape(img,(w*h,d))
def recreate_image(codebook,labels,w,h):   
    d=codebook.shape[1]
    image=np.zeros((w,h,d))
    label_idx=0
    for i in range(w):
        for j in range(h):
            image[i][j]=codebook[labels[label_idx]]
            label_idx+=1
    return image
plt.figure(1)
plt.clf()
ax=plt.axes([0,0,1,1])
plt.axis('off')
plt.title('Original image (96,615 colors)')
plt.imshow(img)
plt.figure(2,figsize=(10,10))
plt.clf()
i=1
for k in [64,32,16,4]:
    t0=time()
    plt.subplot(2,2,i)
    plt.axis('off')
    image_array_sample=shuffle(image_array, random_state=0)[:1000]
    kmeans=KMeans(n_clusters=k, random_state=0).fit(image_array_sample)
    print("done in %0.3fs." % (time()-t0))
    print("Predicting color indices on the full image (k-means)")
    t0=time()
    labels=kmeans.predict(image_array)
    print("done in %0.3fs."%(time()-t0))
    plt.title('Quantized image ('+str(k)+' colors, K-Means)')
    plt.imshow(recreate_image(kmeans.cluster_centers_,labels,w,h))
    i+=1
plt.show()
plt.figure(3, figsize=(10,10))
plt.clf()
i=1
for k in [64,32,16,4]:
    t0=time()
    plt.subplot(2,2,i)
    plt.axis('off')
    codebook_random=shuffle(image_array, random_state=0)[:k+1]
    print("Predicting color indices on the full image (random)")
    t0=time()
    labels_random=pairwise_distances_argmin(codebook_random,image_array,axis=0)
    print("done in %0.3fs."%(time()-t0))
    plt.title('Quantized image ('+str(k)+'colors,nRandom)')
    plt.imshow(recreate_image(codebook_random,labels_random,w,h))
    i+=1
plt.show()

done in 0.522s. Predicting color indices on the full image (k-means) done in 0.298s. done in 0.284s. Predicting color indices on the full image (k-means) done in 0.171s. done in 0.207s. Predicting color indices on the full image (k-means) done in 0.096s. done in 0.124s. Predicting color indices on the full image (k-means) done in 0.043s.

Predicting color indices on the full image (random) done in 0.460s. Predicting color indices on the full image (random) done in 0.241s. Predicting color indices on the full image (random) done in 0.122s. Predicting color indices on the full image (random) done in 0.044s.

算法:像素矢量量化是保持整体外观质量并将显示图像所需的颜色数量从250种减少到4种。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-01-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 图像处理与模式识别研究所 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档