前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【ML】面试准备,关于Adaboost & GBDT算法你需要知道的那些

【ML】面试准备,关于Adaboost & GBDT算法你需要知道的那些

作者头像
yuquanle
发布2020-03-13 01:30:47
5910
发布2020-03-13 01:30:47
举报
文章被收录于专栏:AI小白入门

研究方向:机器学习和自然语言处理

导读

上一份笔记在介绍决策树的过程中我们提到了“决策树是许多集成学习算法的基础算法”。那么,什么是集成学习算法、集成学习算法有哪几种、它们彼此之间有什么区别、集成学习算法合起来性能一定会超过基础学习器吗?在接下来的几份笔记中,我们将会针对几种集成学习算法针对高频问题做推导和解答。

这份笔记将首先针对Adaboost和GBDT算法进行介绍,Adaboost和GBDT算法都属于集成学习中采用Boosting策略的算法,Boosting策略的本质思想就是通过高度相关的弱学习器,在每一轮的迭代重逐渐减小偏差。细分来看,Adaboost和GBDT算法对于减小偏差的方式各有不同:

Adaboost算法的核心是权重的调整:Adaboost在迭代中依据学习器每一轮的表现,调整样本权重和弱学习器权重,最终将多个弱学习器累加成一个强学习器。

GBDT (Gradient Boosting Decision Tree) 梯度提升树的核心在于残差的拟合:GBDT用损失函数的负梯度作为残差的估计值,使用CART回归是依据均方差进行拟合。

如果你刚刚接触集成学习算法,你可能会有如下疑惑:

  • Adaboost和随机森林有什么区别?
  • GBDT和Adaboost如何实现分类和回归?
  • GBDT和Adaboost有什么区别和联系?
  • GBDT如何应对过拟合?
  • 在实际使用中,GBDT为什么在高维稀疏特征的数据集上表现较差?
  • ...

这份笔记将会从个人的理解对这些问题进行推导和解答,如有疏漏,感谢提出~

笔记

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-03-09,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI小白入门 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档