一些闲话:
前面我有篇博客 https://cloud.tencent.com/developer/article/1432368 ,大致说了下如何将pytorch训练的.pth模型转换为mlmodel,部署在IOS端进行前向预测。只是介绍了下类接口,并没有示例,因此有可能会陷入没有demo你说个p的境地。因此,今天就拿实际的模型来说上一说。
其实coreML的demo,github上有很多,但是大部分都是用swift写的,而对于从C/C++语言过来的同学来说,Objective-C或许会更容易看懂一些。所以这次就以yolov2实现的object detection为例,创建Objective-C工程并用真机调试,来实现前向预测(并且附源代码)。
当然,为了偷懒起见,模型并不是我训练的,模型来自这里:https://github.com/syshen/YOLO-CoreML 。该仓库使用swift实现的,有兴趣的可以对比着看。yolov2的mlmodel模型文件,请看上面仓库的readMe中这句话:
execute download.sh to download the pre-trained model % sh download.sh
闲话少说,进入正题:
一、创建xcode工程,选择编程语言为Objective-C。将模型添加到xcode工程中,我将模型名字改为yoloModel,并且量化到了16bit。当然使用原始模型200多MB也完全OK。
二、模型添加到工程后,会自动生成yoloModel类头文件,如下:
//
// yoloModel.h
//
// This file was automatically generated and should not be edited.
//
#import <Foundation/Foundation.h>
#import <CoreML/CoreML.h>
#include <stdint.h>
NS_ASSUME_NONNULL_BEGIN
/// Model Prediction Input Type
API_AVAILABLE(macos(10.13.2), ios(11.2), watchos(4.2), tvos(11.2)) __attribute__((visibility("hidden")))
@interface yoloModelInput : NSObject<MLFeatureProvider>
/// input__0 as color (kCVPixelFormatType_32BGRA) image buffer, 608 pixels wide by 608 pixels high
@property (readwrite, nonatomic) CVPixelBufferRef input__0;
- (instancetype)init NS_UNAVAILABLE;
- (instancetype)initWithInput__0:(CVPixelBufferRef)input__0;
@end
/// Model Prediction Output Type
API_AVAILABLE(macos(10.13.2), ios(11.2), watchos(4.2), tvos(11.2)) __attribute__((visibility("hidden")))
@interface yoloModelOutput : NSObject<MLFeatureProvider>
/// output__0 as 425 x 19 x 19 3-dimensional array of doubles
@property (readwrite, nonatomic, strong) MLMultiArray * output__0;
- (instancetype)init NS_UNAVAILABLE;
- (instancetype)initWithOutput__0:(MLMultiArray *)output__0;
@end
/// Class for model loading and prediction
API_AVAILABLE(macos(10.13.2), ios(11.2), watchos(4.2), tvos(11.2)) __attribute__((visibility("hidden")))
@interface yoloModel : NSObject
@property (readonly, nonatomic, nullable) MLModel * model;
- (nullable instancetype)init;
- (nullable instancetype)initWithContentsOfURL:(NSURL *)url error:(NSError * _Nullable * _Nullable)error;
- (nullable instancetype)initWithConfiguration:(MLModelConfiguration *)configuration error:(NSError * _Nullable * _Nullable)error API_AVAILABLE(macos(10.14), ios(12.0), watchos(5.0), tvos(12.0)) __attribute__((visibility("hidden")));
- (nullable instancetype)initWithContentsOfURL:(NSURL *)url configuration:(MLModelConfiguration *)configuration error:(NSError * _Nullable * _Nullable)error API_AVAILABLE(macos(10.14), ios(12.0), watchos(5.0), tvos(12.0)) __attribute__((visibility("hidden")));
/**
Make a prediction using the standard interface
@param input an instance of yoloModelInput to predict from
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as yoloModelOutput
*/
- (nullable yoloModelOutput *)predictionFromFeatures:(yoloModelInput *)input error:(NSError * _Nullable * _Nullable)error;
/**
Make a prediction using the standard interface
@param input an instance of yoloModelInput to predict from
@param options prediction options
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as yoloModelOutput
*/
- (nullable yoloModelOutput *)predictionFromFeatures:(yoloModelInput *)input options:(MLPredictionOptions *)options error:(NSError * _Nullable * _Nullable)error;
/**
Make a prediction using the convenience interface
@param input__0 as color (kCVPixelFormatType_32BGRA) image buffer, 608 pixels wide by 608 pixels high:
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the prediction as yoloModelOutput
*/
- (nullable yoloModelOutput *)predictionFromInput__0:(CVPixelBufferRef)input__0 error:(NSError * _Nullable * _Nullable)error;
/**
Batch prediction
@param inputArray array of yoloModelInput instances to obtain predictions from
@param options prediction options
@param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
@return the predictions as NSArray<yoloModelOutput *>
*/
- (nullable NSArray<yoloModelOutput *> *)predictionsFromInputs:(NSArray<yoloModelInput*> *)inputArray options:(MLPredictionOptions *)options error:(NSError * _Nullable * _Nullable)error API_AVAILABLE(macos(10.14), ios(12.0), watchos(5.0), tvos(12.0)) __attribute__((visibility("hidden")));
@end
NS_ASSUME_NONNULL_END
模型名称为yoloModel,那么自动生成的类头文件就是"yoloModel.h",生成的类名也叫 yoloModel。
模型的输入名称为input_0,输出为output_0。那么自动生成的API接口就会带有input_0, output_0字段:举个栗子如下:
- (nullable yoloModelOutput *)predictionFromInput__0:(CVPixelBufferRef)input__0 error:(NSError * _Nullable * _Nullable)error;
三、在viewDidLoad里面写调用的demo。当然,从调用demo和自动生成的yoloModel类之间还有很多工作要做,比如说,图像的预处理,比如说得到预测output之后还要对其进行解析得到矩形框信息等,所以我中间封装了一层,这是后话:
- (void)viewDidLoad {
[super viewDidLoad];
// Do any additional setup after loading the view, typically from a nib.
//load image
NSString* imagePath_=[[NSBundle mainBundle] pathForResource:@"dog416" ofType:@"jpg"];
std::string imgPath = std::string([imagePath_ UTF8String]);
cv::Mat image = cv::imread(imgPath);
cv::cvtColor(image, image, CV_BGR2RGBA);
//set classtxt path
NSString* classtxtPath_ = [ [NSBundle mainBundle] pathForResource:@"classtxt" ofType:@"txt"];
std::string classtxtPath = std::string([classtxtPath_ UTF8String]);
//init Detection
bool useCpuOny = false;
MLComputeUnits computeUnit = MLComputeUnitsAll;
cv::Size scaleSize(608, 608);
CDetectObject objectDetection;
objectDetection.init(useCpuOny, computeUnit, classtxtPath, scaleSize);
//run detection
std::vector<DetectionInfo> detectionResults;
objectDetection.implDetection(image, detectionResults);
//draw rectangles
cv::Mat showImage;
cv::resize(image, showImage, scaleSize);
for (int i=0; i<detectionResults.size();i++)
{
cv::rectangle(showImage,detectionResults[i].box, cv::Scalar(255, 0,0), 3);
}
//show in iphone
cv::cvtColor(showImage, showImage, cv::COLOR_RGBA2BGRA);
[self showUIImage:showImage];
}
上面加粗的地方就是自己封装的类CDetectObject,该类暴露的两个接口是init和implDetection。
init接收设置的计算设备信息、类别标签文件的路径,以及模型接收的图像尺寸大小。
implDetection接收输入的图像(RGBA格式),输出检测结果结构体信息,里面包含每个目标属于的类别名、置信度、以及矩形框信息。
struct DetectionInfo {
std::string name;
float confidence;
cv::Rect2d box;
};
四、来让我们看看都要做哪些初始化init操作
包括计算设备的设置、模型初始化、一些基本参数的初始化、和加载标签文件信息。
//init model
int CDetectObject::init(const BOOL useCpuOnly, const MLComputeUnits computeUnit, const std::string& classtxtPath, const cv::Size& scaleSize){
//init configuration
option = [[MLPredictionOptions alloc] init];
option.usesCPUOnly = useCpuOnly;
config = [ [MLModelConfiguration alloc] init];
config.computeUnits = computeUnit;
NSError* err;
Model = [[yoloModel alloc] initWithConfiguration:config error:&err];
//init paramss
inputSize = scaleSize;
maxBoundingBoxes = 10;
confidenceThreshold = 0.5;
nmsThreshold = 0.6;
// anchor boxes
anchors = {0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828};
//load labels
int ret = loadClasstxt(classtxtPath, classes);
return ret;
}
五、再来看看执行预测时要做些什么:
首先,对图像预处理,包括resize到模型要求的尺寸等。
其次,将预处理后的结果送给prediction,得到预测结果。调用coreML自动生成的类预测接口就在这里了。
然后,将预测得到的结果进行解析,根据yolov2模型的输出feature结构来解析出上面DetectionInfo里面的信息。
最后,解析出来后会有大量矩形框,为了去除重复的矩形框信息,需要做一个nmsBox来除去重复量高的矩形框,得到最终结果。
int CDetectObject::implDetection(const cv::Mat& image, std::vector<DetectionInfo>& detectionResults){
if(image.empty()){
NSLog(@"Error! image is empty!");
return -1;
}
//preprocessing
cv::Mat inputImage;
preprocessImage(image, inputImage);
//prediction
MLMultiArray* outFeature = predictImageScene(inputImage);
//analyze the output
std::vector<int> idxList;
std::vector<float> confidenceList;
std::vector<cv::Rect> boxesList;
parseFeature(outFeature, idxList, confidenceList, boxesList);
//nms box
std::vector<int> indices;
cv::dnn::NMSBoxes(boxesList, confidenceList, confidenceThreshold, nmsThreshold, indices);
//get result
for (int i=0; i<indices.size(); i++){
int idx = indices[i];
DetectionInfo objectInfo;
objectInfo.name = classes[idxList[idx]];
objectInfo.confidence = confidenceList[idx];
objectInfo.box = boxesList[idx];
detectionResults.push_back(objectInfo);
}
return 0;
}
预测函数:
MLMultiArray* CDetectObject::predictImageScene(const cv::Mat& imgTensor) {
//preprocess image
//convert to cvPixelbuffer
ins::PixelBufferPool mat2pixelbuffer;
CVPixelBufferRef buffer = mat2pixelbuffer.GetPixelBuffer(imgTensor);
//predict from image
NSError *error;
yoloModelInput *input = [[yoloModelInput alloc] initWithInput__0:buffer];
yoloModelOutput *output = [Model predictionFromFeatures:input options:option error:&error];
return output.output__0;
}
解析feature函数:
void CDetectObject::parseFeature(MLMultiArray* feature, std::vector<int>& ids, std::vector<float>& confidences, std::vector<cv::Rect>& boxes){
NSArray<NSNumber*>* featureShape = feature.shape;
int d0 = [[featureShape objectAtIndex:0] intValue];
int d1 = [[featureShape objectAtIndex:1] intValue];
int d2 = [[featureShape objectAtIndex:2] intValue];
int stride0 = [feature.strides[0] intValue];
int stride1 = [feature.strides[1] intValue];
int stride2 = [feature.strides[2] intValue];
int blockSize = 32;
int gridHeight = d1;
int gridWidth = d2;
int boxesPerCell = 5;//Int(anchors.count/5)
int numClasses = (int)classes.size();
double* pdata = (double*)feature.dataPointer;
for (int cy =0; cy< gridHeight; cy++){
for (int cx =0; cx< gridWidth; cx++){
for (int b=0; b<boxesPerCell; b++){
int channel = b*(numClasses + 5);
int laterId= cx*stride2+cy*stride1;
float tx = (float)pdata[channel*stride0 + laterId];
float ty = (float)pdata[(channel+1)*stride0 + laterId];
float tw = (float)pdata[(channel+2)*stride0 + laterId];
float th = (float)pdata[(channel+3)*stride0 + laterId];
float tc = (float)pdata[(channel+4)*stride0 + laterId];
// The predicted tx and ty coordinates are relative to the location
// of the grid cell; we use the logistic sigmoid to constrain these
// coordinates to the range 0 - 1. Then we add the cell coordinates
// (0-12) and multiply by the number of pixels per grid cell (32).
// Now x and y represent center of the bounding box in the original
// 608x608 image space.
float x = (float(cx) + sigmoid(tx)) * blockSize;
float y = (float(cy) + sigmoid(ty)) * blockSize;
// The size of the bounding box, tw and th, is predicted relative to
// the size of an "anchor" box. Here we also transform the width and
// height into the original 608x608 image space.
float w = exp(tw) * anchors[2*b] * blockSize;
float h = exp(th) * anchors[2*b + 1] * blockSize;
// The confidence value for the bounding box is given by tc. We use
// the logistic sigmoid to turn this into a percentage.
float confidence = sigmoid(tc);
std::vector<float> classesProb(numClasses);
for (int i = 0; i < numClasses; ++i) {
int offset = (channel+5+i)*stride0 + laterId;
classesProb[i] = (float)pdata[offset];
}
softmax(classesProb);
// Find the index of the class with the largest score.
auto max_itr = std::max_element(classesProb.begin(), classesProb.end());
int index = int(max_itr - classesProb.begin());
// Combine the confidence score for the bounding box, which tells us
// how likely it is that there is an object in this box (but not what
// kind of object it is), with the largest class prediction, which
// tells us what kind of object it detected (but not where).
float confidenceInClass = classesProb[index] * confidence;
if(confidence>confidenceThreshold){
// Since we compute 19x19x5 = 1805 bounding boxes, we only want to
// keep the ones whose combined score is over a certain threshold.
//if (confidenceInClass > confidenceThreshold){
cv::Rect2d rect =cv::Rect2d(float(x-w*0.5), float(y-h*0.5), float(w), float(h));
ids.push_back(index);
confidences.push_back(confidenceInClass);
boxes.push_back(rect);
}
}
}
}
}
六、来看看预测结果如何:
开发环境:MacOS Mojave (10.14.3), Xcode10.2 , Iphone XS (IOS 12.2), opencv2framework.
上面代码我放在码云git上:https://gitee.com/rxdj/yolov2_object_detection.git 。
仅供参考,如有错误,望不吝赐教。