前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >storm流式处理框架

storm流式处理框架

作者头像
周小董
发布2019-05-15 15:13:58
9600
发布2019-05-15 15:13:58
举报
文章被收录于专栏:python前行者

版权声明:如需转载本文章,请保留出处! https://blog.csdn.net/xc_zhou/article/details/89966108

实现一个实时计算系统

全量数据处理使用的大多是鼎鼎大名的hadoop或者hive,作为一个批处理系统,hadoop以其吞吐量大、自动容错等优点,在海量数据处理上得到了广泛的使用。但是,hadoop不擅长实时计算,因为它天然就是为批处理而生的,这也是业界一致的共识。否则最近这两年也不会有s4,storm,puma这些实时计算系统如雨后春笋般冒出来啦。先抛开s4,storm,puma这些系统不谈,我们首先来看一下,如果让我们自己设计一个实时计算系统,我们要解决哪些问题。

低延迟:都说了是实时计算系统了,延迟是一定要低的。 高性能:性能不高就是浪费机器,浪费机器是要受批评的哦。 分布式:系统都是为应用场景而生的,如果你的应用场景、你的数据和计算单机就能搞定,那么不用考虑这些复杂的问题了。我们所说的是单机搞不定的情况。 可扩展:伴随着业务的发展,我们的数据量、计算量可能会越来越大,所以希望这个系统是可扩展的。 容错:这是分布式系统中通用问题。一个节点挂了不能影响我的应用。

好,如果仅仅需要解决这5个问题,可能会有无数种方案,而且各有千秋,随便举一种方案,使用消息队列+分布在各个机器上的工作进程就ok啦。我们再继续往下看。

1、容易在上面开发应用程序。亲,你设计的系统需要应用程序开发人员考虑各个处理组件的分布、消息的传递吗?如果是,那有点麻烦啊,开发人员可能会用不好,也不会想去用。

2、消息不丢失。用户发布的一个宝贝消息不能在实时处理的时候给丢了,对吧?更严格一点,如果是一个精确数据统计的应用,那么它处理的消息要不多不少才行。这个要求有点高哦。

诞 生

在2011年Storm开源之前,由于Hadoop的火红,整个业界都在喋喋不休地谈论大数据。Hadoop的高吞吐,海量数据处理的能力使得人们可以方便地处理海量数据。但是,Hadoop的缺点也和它的优点同样鲜明——延迟大,响应缓慢,运维复杂。

有需求也就有创造,在Hadoop基本奠定了大数据霸主地位的时候,很多的开源项目都是以弥补Hadoop的实时性为目标而被创造出来。而在这个节骨眼上Storm横空出世了。

  • Storm带着流式计算的标签华丽丽滴出场了,看看它的一些卖点

分布式系统:可横向拓展,现在的项目不带个分布式特性都不好意思开源。 运维简单:Storm的部署的确简单。虽然没有Mongodb的解压即用那么简单,但是它也就是多安装两个依赖库而已。 高度容错:模块都是无状态的,随时宕机重启。 无数据丢失:Storm创新性提出的ack消息追踪框架和复杂的事务性处理,能够满足很多级别的数据处理需求。不过,越高的数据处理需求,性能下降越严重。 多语言:实际上,Storm的多语言更像是临时添加上去似的。因为,你的提交部分还是要使用Java实现。

认 识

Storm是一个免费开源、分布式、高容错的实时计算系统。Storm令持续不断的流计算变得容易,弥补了Hadoop批处理所不能满足的实时要求。Storm经常用于在实时分析、在线机器学习、持续计算、分布式远程调用和ETL等领域。Storm的部署管理非常简单,而且,在同类的流式计算工具,Storm的性能也是非常出众的。

Storm主要分为两种组件Nimbus和Supervisor。这两种组件都是快速失败的,没有状态。任务状态和心跳信息等都保存在Zookeeper上的,提交的代码资源都在本地机器的硬盘上。

  • Nimbus负责在集群里面发送代码,分配工作给机器,并且监控状态。全局只有一个。
  • Supervisor会监听分配给它那台机器的工作,根据需要启动/关闭工作进程Worker。每一个要运行Storm的机器上都要部署一个,并且,按照机器的配置设定上面分配的槽位数。
  • Zookeeper是Storm重点依赖的外部资源。Nimbus和Supervisor甚至实际运行的Worker都是把心跳保存在Zookeeper上的。Nimbus也是根据Zookeerper上的心跳和任务运行状况,进行调度和任务分配的。
  • Storm提交运行的程序称为Topology。
  • Topology处理的最小的消息单位是一个Tuple,也就是一个任意对象的数组。
  • Topology由Spout和Bolt构成。Spout是发出Tuple的结点。Bolt可以随意订阅某个Spout或者Bolt发出的Tuple。Spout和Bolt都统称为component。

下图是一个Topology设计的逻辑图的例子。

下图是Topology的提交流程图。

下图是Storm的数据交互图。可以看出两个模块Nimbus和Supervisor之间没有直接交互。状态都是保存在Zookeeper上。Worker之间通过ZeroMQ传送数据。

虽然,有些地方做得还是不太好,例如,底层使用的ZeroMQ不能控制内存使用(下个release版本,引入了新的消息机制使用netty代替ZeroMQ),多语言支持更多是噱头,Nimbus还不支持HA。但是,就像当年的Hadoop那样,很多公司选择它是因为它是唯一的选择。而这些先期使用者,反过来促进了Storm的发展。

当 前

Storm被广泛应用于实时分析,在线机器学习,持续计算、分布式远程调用等领域。来看一些实际的应用:

  • 一淘-实时分析系统pora:实时分析用户的属性,并反馈给搜索引擎。最初,用户属性分析是通过每天在云梯上定时运行的MR job来完成的。为了满足实时性的要求,希望能够实时分析用户的行为日志,将最新的用户属性反馈给搜索引擎,能够为用户展现最贴近其当前需求的结果。
  • 携程-网站性能监控:实时分析系统监控携程网的网站性能。利用HTML5提供的performance标准获得可用的指标,并记录日志。Storm集群实时分析日志和入库。使用DRPC聚合成报表,通过历史数据对比等判断规则,触发预警事件。

如果,业务场景中需要低延迟的响应,希望在秒级或者毫秒级完成分析、并得到响应,而且希望能够随着数据量的增大而拓展。那就可以考虑下,使用Storm了。

  • 试想下,如果,一个游戏新版本上线,有一个实时分析系统,收集游戏中的数据,运营或者开发者可以在上线后几秒钟得到持续不断更新的游戏监控报告和分析结果,然后马上针对游戏的参数和平衡性进行调整。这样就能够大大缩短游戏迭代周期,加强游戏的生命力(实际上,zynga就是这么干的!虽然使用的不是Storm……Zynga研发之道探秘:用数据说话)。
  • 除了低延迟,Storm的Topology灵活的编程方式分布式协调也会给我们带来方便。用户属性分析的项目,需要处理大量的数据。使用传统的MapReduce处理是个不错的选择。但是,处理过程中有个步骤需要根据分析结果,采集网页上的数据进行下一步的处理。这对于MapReduce来说就不太适用了。但是,Storm的Topology就能完美解决这个问题。基于这个问题,我们可以画出这样一个Storm的Topology的处理图。

我们只需要实现每个分析的过程,而Storm帮我们把消息的传送和接受都完成了。更加激动人心的是,你只需要增加某个Bolt的并行度就能够解决掉某个结点上的性能瓶颈。

未 来

在流式处理领域里,Storm的直接对手是S4。不过,S4冷淡的社区、半成品的代码,在实际商用方面输给Storm不止一条街。

如果把范围扩大到实时处理,Storm就一点都不寂寞了。

  • Puma:Facebook使用puma和Hbase相结合来处理实时数据,使批处理 计算平台具备一定实时能力。 不过这不算是一个开源的产品。只是内部使用。
  • HStreaming:尝试为Hadoop环境添加一个实时的组件HStreaming能让一个Hadoop平台在几天内转为一个实时系统。分商业版和免费版。也许HStreaming可以借Hadoop的东风,撼动Storm。
  • Spark Streaming:作为UC Berkeley云计算software stack的一部分,Spark Streaming是建立在Spark上的应用框架,利用Spark的底层框架作为其执行基础,并在其上构建了DStream的行为抽象。利用DStream所提供的api,用户可以在数据流上实时进行count,join,aggregate等操作。

当然,Storm也有Yarn-Storm项目,能让Storm运行在Hadoop2.0的Yarn框架上,可以让Hadoop的MapReduce和Storm共享资源。

总 结

知乎上有一个挺好的问答: 问:实时处理系统(类似s4, storm)对比直接用MQ来做好处在哪里? 答:好处是它帮你做了: 1) 集群控制。2) 任务分配。3) 任务分发 4) 监控 等等。

需要知道Storm不是一个完整的解决方案。使用Storm你需要加入消息队列做数据入口,考虑如何在流中保存状态,考虑怎样将大问题用分布式去解决。解决这些问题的成本可能比增加一个服务器的成本还高。但是,一旦下定决定使用了Storm并解决了那些恼人的细节,你就能享受到Storm给你带来的简单,可拓展等优势了。

技术的发展日新月异,数据处理领域越来越多优秀的开源产品。Storm的过去是成功的,将来会如何发展,我们拭目以待吧。


zookeeper是storm运行强依赖

安装zookeeper:请参考:https://blog.csdn.net/xc_zhou/article/details/81916189

为了让zookeeper异常退出后能自动重启,需要安装deamontools

代码语言:javascript
复制
wget http://cr.yp.to/daemontools/daemontools-0.76.tar.gz
tar zxvf daemontools-0.76.tar.gz
cd admin/daemontools-0.76/

vim src/error.h 找到:extern int errno; 改成:#include <errno.h>

执行

代码语言:javascript
复制
package/install

这时已经安装好了

代码语言:javascript
复制
[root@centos7vm daemontools-0.76]# which supervise
/usr/local/bin/supervise

创建/data/service/zookeeper/run文件,内容为:

代码语言:javascript
复制
#!/bin/bash
exec 2>&1
exec /data/zookeeper-3.4.8/bin/zkServer.sh start

增加执行权限

代码语言:javascript
复制
chmod +x /data/service/zookeeper/run

杀了之前手工启动的zookeeper,然后执行

代码语言:javascript
复制
cd /data/service/zookeeper
nohup supervise /data/service/zookeeper &

这时zookeeper被supervice启动了,尝试杀一次zookeeper后还会自动起来

安装storm

代码语言:javascript
复制
wget http://apache.fayea.com/storm/apache-storm-1.2.2/apache-storm-1.2.2.tar.gz
tar -zxvf apache-storm-1.2.2.tar.gz
cd apache-storm-1.2.2

修改conf/storm.yaml,添加如下配置

代码语言:javascript
复制
storm.zookeeper.servers:
    - "127.0.0.1"
nimbus.seeds: ["127.0.0.1"]
ui.port: 9090
#nimbus.host: "localhost"
supervisor.slots.ports:
    - 6700
    - 6701
    - 6702
    - 6703

启动storm,执行

代码语言:javascript
复制
./bin/storm nimbus &
./bin/storm supervisor &
./bin/storm ui &

打开web界面,http://ip:8080

界面如下:

安装完成

storm系统由一个nimbus节点和多个supervisor节点组成,上面因为是部署单机版本,所以只启动了一个supervisor。他们之间是通过zookeeper协调运行的,所以必须依赖zookeeper。nimbus负责分配任务和监控任务,本身不做计算,supervisor负责真正的计算任务。

storm上运行的任务和map-reduce的不同在于它运行的是一种topology任务,也就是一种有向无环图形式的任务服务。

上面配置文件中配置的supervisor.slots.ports包含了4个port,也就是这个supervisor可以监听4个端口同时并发的执行4个任务,因此在web界面里我们看到Free slots是4

在map-reduce系统上运行的任务我们叫做mapper和reducer,相对之下,在storm上运行的任务叫做spout(涛涛不绝地喷口)和bolt(螺栓),在拓扑里传递的消息叫做tuple。spout其实就是信息产生的源头,而bolt就是处理逻辑


Python目前有两个库,一个是pyleus,一个是streamparse。前者在github上已经有两年都不更新了,只支持到storm 0.9。后者一直在更新,所以对于最新的strom 1.1.0, 没有多的选项了。

代码语言:javascript
复制
pip install streamparse

然后开始跑demo:

代码语言:javascript
复制
sparse quickstart wordcount
cd wordcount
sparse run

结果直接跳错,告诉我缺少lein,搞得我一脸懵逼。google了一下,才知道这是Clojure的包管理工具。于是直接去lein官网

lein的安装有两种方式,一种是用脚本下载安装,一种是要加PPA。原本lein也提供apt直接的安装了,结果各种历史原因,所以呵呵了。。。

作为懒人,首选脚本下载。结果速度奇慢无比。。。看着安装进度需要一天,我果断放弃。。。

只能选择PPA添加apt安装了:

代码语言:javascript
复制
sudo add-apt-repository ppa:mikegedelman/leiningen-git-stable
sudo apt-get update
sudo apt-get install lein

完成后继续跑sparse run命令。。结果还是不行,去stackoverflow翻了一通后发现,需要配置config.json。但是streamparse的demo里没提,说创建完项目直接就能跑,我顿时感觉有点坑啊。。。

配置config.json如下:

代码语言:javascript
复制
{
    "serializer": "json",
    "topology_specs": "topologies/",
    "virtualenv_specs": "virtualenvs/",
    "envs": {
        "prod": {
            "user": "user_xxx",
            "ssh_password": "password",
            "nimbus": "localhost",
            "workers": ["localhost"],
            "log": {
                "path": "",
                "max_bytes": 1000000,
                "backup_count": 10,
                "level": "info"
            },
            "virtualenv_root": "/path_xx/virtualenvs"
        }
    }
}

然后试着运行:

代码语言:javascript
复制
sparse run

然后立刻被打脸,说ssh user_xxx@localhost要输入密码,如果sshd_config如果没配置,即便输入正确的密码也会失败。这里可以参考如何ssh本地主机

配置完免密码登录后,连密码一栏都不用搞了,再次运行。

机器会花一定时间来编译JAR文件,然后就能看到实时流的输出了。

但是这只是试运行,如果要发布拓扑到storm集群上,则要运行:

代码语言:javascript
复制
sparse submit

结果又跳了一个错,说pip版本太低。。。

streamparse会在节点上构建python的虚拟环境, 然后在节点上安装好所有需要的python库。看脚本执行的顺序,会在生成虚拟环境后自动升级pip。但是不知道为何没有执行成功。所以我只能手动去对应的路径里升级pip:

代码语言:javascript
复制
cd /path_xx/virtualenvs/wordcount/bin
source activate
pip install --upgrade pip
deactivate

最后再次运行:

代码语言:javascript
复制
sparse submit

没有报错就表示已经提交拓扑到storm上了,打开ui地址,可以看到拓扑一栏里已经显示有wordcount的拓扑在运行。

参考:https://www.cnblogs.com/langtianya/p/5199529.html

https://www.jianshu.com/p/224995b66a84

https://blog.csdn.net/jiangjingxuan/article/details/54729034

https://blog.csdn.net/gohigher2018/article/details/80384256

https://blog.csdn.net/weixin_33947521/article/details/87218296

Apache Storm 官方文档中文版:https://www.cntofu.com/book/108/readme.html

https://blog.csdn.net/wanglha/article/details/51382335

https://github.com/weyo/Storm-Documents

http://ifeve.com/apache-storm/

pypi:https://pypi.org/project/storm/

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019年05月08日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 实现一个实时计算系统
  • 诞 生
  • 认 识
  • 当 前
  • 未 来
  • 总 结
  • 安装storm
相关产品与服务
流计算 Oceanus
流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的企业级实时大数据分析平台,具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档