新智元报道
来源:GitHub 作者:Junho Kim
今天为大家推荐一个实用的GitHub项目:TensorFlow-Cookbook。
这是一个易用的TensorFlow代码集,作者是来自韩国的AI研究科学家Junho Kim,内容涵盖了谱归一化卷积、部分卷积、pixel shuffle、几种归一化函数、 tf-datasetAPI,等等。
作者表示,这个repo包含了对GAN有用的一些通用架构和函数。
项目正在进行中,作者将持续为其他领域添加有用的代码,目前正在添加的是 tf-Eager mode的代码。欢迎提交pull requests和issues。
Github地址 :
https://github.com/taki0112/Tensorflow-Cookbook
如何使用
ops.py
utils.py
def network(x, is_training=True, reuse=False, scope="network"): with tf.variable_scope(scope, reuse=reuse):
x = conv(...)
...
return logit
Image_Data_Class = ImageData(img_size, img_ch, augment_flag)
trainA = trainA.map(Image_Data_Class.image_processing, num_parallel_calls=16)
trainA = trainA.shuffle(buffer_size=10000).prefetch(buffer_size=batch_size).batch(batch_size).repeat()
trainA_iterator = trainA.make_one_shot_iterator()
data_A = trainA_iterator.get_next()
logit = network(data_A)
padding='SAME'
pad_type
sn
Ra
loss_func
weight_init = tf.truncated_normal_initializer(mean=0.0, stddev=0.02)
weight_regularizer = tf.contrib.layers.l2_regularizer(0.0001)
weight_regularizer_fully = tf.contrib.layers.l2_regularizer(0.0001)
Xavier
: tf.contrib.layers.xavier_initializer()He
: tf.contrib.layers.variance_scaling_initializer()Normal
: tf.random_normal_initializer(mean=0.0, stddev=0.02)Truncated_normal
: tf.truncated_normal_initializer(mean=0.0, stddev=0.02)Orthogonal
: tf.orthogonal_initializer(1.0) / # if relu = sqrt(2), the others = 1.0l2_decay
: tf.contrib.layers.l2_regularizer(0.0001)orthogonal_regularizer
: orthogonal_regularizer(0.0001) & orthogonal_regularizer_fully(0.0001)卷积(Convolution)
x = conv(x, channels=64, kernel=3, stride=2, pad=1, pad_type='reflect', use_bias=True, sn=True, scope='conv')
x = partial_conv(x, channels=64, kernel=3, stride=2, use_bias=True, padding='SAME', sn=True, scope='partial_conv')
x = dilate_conv(x, channels=64, kernel=3, rate=2, use_bias=True, padding='SAME', sn=True, scope='dilate_conv')
Deconvolution
x = deconv(x, channels=64, kernel=3, stride=2, padding='SAME', use_bias=True, sn=True, scope='deconv')
x = fully_conneted(x, units=64, use_bias=True, sn=True, scope='fully_connected')
x = conv_pixel_shuffle_down(x, scale_factor=2, use_bias=True, sn=True, scope='pixel_shuffle_down')
x = conv_pixel_shuffle_up(x, scale_factor=2, use_bias=True, sn=True, scope='pixel_shuffle_up')
down
===> [height, width] -> [height // scale_factor, width // scale_factor]up
===> [height, width] -> [height * scale_factor, width * scale_factor]Block
x = resblock(x, channels=64, is_training=is_training, use_bias=True, sn=True, scope='residual_block')
x = resblock_down(x, channels=64, is_training=is_training, use_bias=True, sn=True, scope='residual_block_down')
x = resblock_up(x, channels=64, is_training=is_training, use_bias=True, sn=True, scope='residual_block_up')
down
===> [height, width] -> [height // 2, width // 2]up
===> [height, width] -> [height * 2, width * 2]attention block
x = self_attention(x, channels=64, use_bias=True, sn=True, scope='self_attention')
x = self_attention_with_pooling(x, channels=64, use_bias=True, sn=True, scope='self_attention_version_2')
x = squeeze_excitation(x, channels=64, ratio=16, use_bias=True, sn=True, scope='squeeze_excitation')
x = convolution_block_attention(x, channels=64, ratio=16, use_bias=True, sn=True, scope='convolution_block_attention')
Normalization
Normalization
x = batch_norm(x, is_training=is_training, scope='batch_norm')
x = instance_norm(x, scope='instance_norm')
x = layer_norm(x, scope='layer_norm')
x = group_norm(x, groups=32, scope='group_norm')
x = pixel_norm(x)
x = batch_instance_norm(x, scope='batch_instance_norm')
x = condition_batch_norm(x, z, is_training=is_training, scope='condition_batch_norm'):
x = adaptive_instance_norm(x, gamma, beta):
https://github.com/taki0112/BigGAN-Tensorflow
adaptive_instance_norm
,请参考:https://github.com/taki0112/MUNIT-Tensorflow
x = relu(x)
x = lrelu(x, alpha=0.2)
x = tanh(x)
x = sigmoid(x)
x = swish(x)
x = up_sample(x, scale_factor=2)
x = max_pooling(x, pool_size=2)
x = avg_pooling(x, pool_size=2)
x = global_max_pooling(x)
x = global_avg_pooling(x)
x = flatten(x)
x = hw_flatten(x)
Loss
loss, accuracy = classification_loss(logit, label)
loss = L1_loss(x, y)
loss = L2_loss(x, y)
loss = huber_loss(x, y)
loss = histogram_loss(x, y)
histogram_loss
表示图像像素值在颜色分布上的差异。d_loss = discriminator_loss(Ra=True, loss_func='wgan-gp', real=real_logit, fake=fake_logit)
g_loss = generator_loss(Ra=True, loss_func='wgan_gp', real=real_logit, fake=fake_logit)
gradient_penalty,
请参考:https://github.com/taki0112/BigGAN-Tensorflow/blob/master/BigGAN_512.py#L180
loss = kl_loss(mean, logvar)
Junho Kim
Github地址 :
https://github.com/taki0112/Tensorflow-Cookbook