JavaEdge
史上最快! 10小时大数据入门实战(五)-分布式计算框架MapReduce1 MapReduce概述2 MapReduce编程模型之通过wordcount词频统计分析案例入门MapReduce执行流程
关注作者
前往小程序,Get
更优
阅读体验!
立即前往
腾讯云
开发者社区
文档
建议反馈
控制台
登录/注册
首页
学习
活动
专区
工具
TVP
最新优惠活动
文章/答案/技术大牛
搜索
搜索
关闭
发布
首页
学习
活动
专区
工具
TVP
最新优惠活动
返回腾讯云官网
JavaEdge
首页
学习
活动
专区
工具
TVP
最新优惠活动
返回腾讯云官网
社区首页
>
专栏
>
史上最快! 10小时大数据入门实战(五)-分布式计算框架MapReduce1 MapReduce概述2 MapReduce编程模型之通过wordcount词频统计分析案例入门MapReduce执行流程
史上最快! 10小时大数据入门实战(五)-分布式计算框架MapReduce1 MapReduce概述2 MapReduce编程模型之通过wordcount词频统计分析案例入门MapReduce执行流程
JavaEdge
关注
发布于 2018-07-04 16:39:11
946
0
发布于 2018-07-04 16:39:11
举报
文章被收录于专栏:
JavaEdge
目录
1 MapReduce概述
2 MapReduce编程模型之通过wordcount词频统计分析案例入门
MapReduce执行流程
InputFormat
OutputFormat OutputFormt接口决定了在哪里以及怎样持久化作业结果。Hadoop为不同类型的格式提供了一系列的类和接口,实现自定义操作只要继承其中的某个类或接口即可。你可能已经熟悉了默认的OutputFormat,也就是TextOutputFormat,它是一种以行分隔,包含制表符界定的键值对的文本文件格式。尽管如此,对多数类型的数据而言,如再常见不过的数字,文本序列化会浪费一些空间,由此带来的结果是运行时间更长且资源消耗更多。为了避免文本文件的弊端,Hadoop提供了SequenceFileOutputformat,它将对象表示成二进制形式而不再是文本文件,并将结果进行压缩。
3 MapReduce核心概念
3.1 Split
3.2 InputFormat
4 MapReduce 1.x 架构
5 MapReduce 2.x 架构
本文参与
腾讯云自媒体同步曝光计划
,分享自作者个人站点/博客。
原始发表:2018.06.24 ,如有侵权请联系
cloudcommunity@tencent.com
删除
前往查看
大数据
分布式
mapreduce
本文分享自
作者个人站点/博客
前往查看
如有侵权,请联系
cloudcommunity@tencent.com
删除。
本文参与
腾讯云自媒体同步曝光计划
,欢迎热爱写作的你一起参与!
大数据
分布式
mapreduce
评论
登录
后参与评论
0 条评论
热度
最新
推荐阅读
LV.
文章
0
获赞
0
目录
1 MapReduce概述
2 MapReduce编程模型之通过wordcount词频统计分析案例入门
MapReduce执行流程
3 MapReduce核心概念
3.1 Split
3.2 InputFormat
4 MapReduce 1.x 架构
5 MapReduce 2.x 架构
相关产品与服务
大数据
全栈大数据产品,面向海量数据场景,帮助您 “智理无数,心中有数”!
产品介绍
11.11 上云拼团GO
领券
问题归档
专栏文章
快讯文章归档
关键词归档
开发者手册归档
开发者手册 Section 归档
0
0
0
推荐