前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >楼盘价格数据采集与可视化分析

楼盘价格数据采集与可视化分析

作者头像
机器学习AI算法工程
发布2018-03-09 10:59:29
1.7K0
发布2018-03-09 10:59:29
举报
文章被收录于专栏:机器学习AI算法工程

本文就从数据采集、数据清洗、数据分析与可视化三部分来看看新的一年里房市的一些问题。

数据采集:

数据采集即从网页上采集我们需要的指定信息,一般使用爬虫实现。当前开源的爬虫非常多,处于简便及学习的目的,在此使用python的urllib2库模拟http访问网页,并BeautifulSoup解析网页获取指定的字段信息。本人获取的链家网上的新房和二手房数据,先来看看原始网页的结构:

首先是URL,不管是新房还是二手房,链家网的房产数据都是以列表的方式存在,比较容易获取,如下图:

其中包含的信息有楼盘名称、地址、价格等信息,回到原始网页,看看在html中,这些信息都在什么地方,如下图:

值得注意的是,原始的html为了节省传输带宽一般是经过压缩的,不太方便分析,可以借助一些html格式化工具进行处理再分析。知道这些信息后,就可以模拟http请求来拉取html网页并使用

BeautifulSoup提取指定的字段了。

[python] view plain copy print?

代码语言:javascript
复制
fw = open("./chengdu.txt","a+")  
index = [i+1 for i in range(32)]  
for pa in index:    
 try:  
 if pa==1:  
            url = "http://cd.fang.lianjia.com/loupan/" 
 else:  
            url = "http://cd.fang.lianjia.com/loupan/pg%d/"%(pa)  
 print "request:"+url  
        req = urllib2.Request( url )  
        req.add_header("User-Agent","Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.101 Safari/537.36")  
        req.add_header("Accept","*/*")  
        req.add_header("Accept-Language","zh-CN,zh;q=0.8")  
 
        data = urllib2.urlopen( req )  
        res = data.read()  
 #print res 
 #res = res.replace(" ","") 
 #print res 
 #objects = demjson.decode(res) 
 
        soup = BeautifulSoup(res)  
        houseLst = soup.findAll(id='house-lst')  
        resp = soup.findAll('div', attrs = {'class': 'info-panel'})  
 
 for i in range(len(resp)):  
            name =  resp[i].findAll('a', attrs = {'target': '_blank'})[0].text   
 
            privice = resp[i].findAll('span', attrs = {'class': 'num'})  
            privice =  privice[0].text  
 
            region = resp[i].findAll('span', attrs = {'class': 'region'})  
            address =  region[0].text.split('(')[0]  
 ##解析获得经纬度 
            location,city,district = getGdLocation(name)  
 if not location:  
                location = getBdLocation(address)#自定义函数 
 if not location:  
 continue 
            formatStr = "%s,%s,%s,%s,%s\n"%(city,district,name,location,privice)  
 print formatStr  
            fw.write(formatStr)  
 except:  
 pass 
fw.close()  

数据清洗:

数据清洗,顾名思义就是将不合规的数据清理掉,留下可供我们能够正确分析的数据,至于哪些数据需要清理掉,则和我们最终的分析目标有一定的关系,可谓仁者见仁智者见智了。在这里,由于是基于地理位置做的一个统计分析,显然爬取的地理位置必须是准确的才行。但由于售房者填写的地址和楼盘名称可能有误,如何将这些有误的识别出来成为这里数据清洗成败的关键。我们清洗错误地理位置的逻辑是:使用高德地图的地理位置逆编码接口(地理位置逆编码即将地理名称解析成经纬度)获得楼盘名称和楼盘地址。对应的经纬度,计算二者对应的经纬度之间的距离,如果距离值超过一定的阀值,则认为地址标注有误或者地址标注不明确。经过清洗后,获取到的成都地区的在售楼盘及房屋数量总计在3000套的样子。

经过清洗后的数据格式为:

包括市、区、楼盘/房屋名称、经纬度、价格四个维度。

数据分析与可视化:

首先是新推楼盘挂牌价格与销售价格

市中心依然遵循了寸独存金的原则,销售价格远远高于郊县,一方面原因是位置地段、配套的独特性,一方面也是由于可供销售的土地面积、楼盘数量极为有限。

二手房销售价格和挂牌数量

二手房交易重要集中在市区及一些经济比较发达的郊县,不同区县的价格分化并不大,可能原因是老城区销售的二手房存在一部分老房子、同时二手房的价格卖家写的比较随意。

二手房数据的箱型图

这个就更为明显的印证了上面的结论,主城区的二手房存在一部分价格远低于市场均价的(即老房子),也有一部分价格昂贵的(新房、豪宅)出售,郊县的价格均方差则会低很多。

房屋销售热度的空间可视化

房屋销售热度以该区域的房屋销售数量和房屋销售价格综合来衡量,计算方式以该区域销售的房屋数量及销售价格进行加权。

新房销售热度

二手房销售热度

主城区没什么好说的了,人口密度大、买房售房的都多。在南边有一块远离市区的地方、新房和二手房的交易热度都很高,即成都市天府新区,目前配套和各项设施都不太完善,去这里花高价买房安家的老百姓想必不会太多,猜测是去年炒房热过年,这些人现在开始出售房屋了。

via http://blog.csdn.net/zbc1090549839/article/details/54692147

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-02-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据挖掘DT数据分析 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 数据采集:
  • 数据清洗:
  • 数据分析与可视化:
相关产品与服务
腾讯云 BI
腾讯云 BI(Business Intelligence,BI)提供从数据源接入、数据建模到数据可视化分析全流程的BI能力,帮助经营者快速获取决策数据依据。系统采用敏捷自助式设计,使用者仅需通过简单拖拽即可完成原本复杂的报表开发过程,并支持报表的分享、推送等企业协作场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档