具有张量流的大规模线性模型 tf.estimatorAPI为TensorFlow中的线性模型提供了一套丰富的工具(除其他外)。本文档提供了这些工具的概述。它说明: 线性模型是什么。
以下教程解释了TensorFlow系统上CPU和GPU的交互: 使用GPU以下教程介绍了图像识别的各个方面: 图像识别,它介绍了图像识别领域和用于识别图像的模型(初始)。
预取输入数据的队列以隔离模型与磁盘延迟和消耗较大的图像预处理。 我们还提供了该模型的多GPU版本,它演示了: 配置模型以并行训练多个GPU卡。 在多个GPU之间共享和更新变量。
使用显式内核方法改进线性模型 在本教程中,我们将演示如何将(明确的)内核方法与线性模型结合起来,在隐性增加训练和推理时间的情况下,大幅提高后者的预测质量。
TensorFlow广泛和深度学习教程 在之前的TensorFlow线性模型教程中,我们使用人口普查收入数据集训练了一个逻辑回归模型来预测个人年收入超过5万美元的概率。
DeepMNISTforExperts TensorFlow是进行大规模数值计算的强大库。它擅长的任务之一是实施和培训深度神经网络。
训练神经网络是通过对权重施加许多微小移动来完成的,而这些小增量通常需要浮点精度才能工作(尽管这里也有研究努力使用量化表示)。 采用预先训练的模型并运行推理是非常不同的。
基准 概观 在多个平台上测试了一系列图像分类模型,为TensorFlow社区创建了参考点。Methodology部分详细说明了测试如何执行并且链接到了所使用的脚本。
例如,您可能已经训练了一个模型,其中包含一个名为"weights"您要将它的值恢复到名为"params"的变量中。 仅保存或恢复模型使用的变量子集有时也很有用。
在本教程中,我们将训练一个模型来查看图像并预测它们的位数。我们的目标不是培养一个真正精心设计的模型来实现最先进的性能(尽管我们会在稍后为您提供代码!)而是倾向于使用TensorFlow。
在使用GPU进行训练时应始终使用NCHW。NHWC在CPU上有时更快。一个灵活的模型可以在GPU上使用NCHW进行训练,并使用NHWC在CPU上进行推理,并从训练中获得权重。
您将了解如何构建一个input_fn预处理模型并将数据输入到模型中。然后,您将实施一项input_fn将训练,评估和预测数据输入到神经网络回归器以预测房屋中值的中值。
CBOW和skip-gram模型使用二元分类目标(逻辑回归)来训练,以在同一上下文中区分来自(k)虚数(噪音)单词(\tildew)的真实目标词(w_t)。我们在下面对CBOW模型进行说明。
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287