首页
学习
活动
专区
圈层
工具
发布
    • 综合排序
    • 最热优先
    • 最新优先
    时间不限
  • 来自专栏等离子设备的应用

    等离子清洗机技术要点讨论-1

    等离子体表面处理技术 等离子体按照传统分类方式可以分为低温和高温等离子体,其二者的区别主要在于等离子体的温度不同,等离子体的温度是依据电子和离子温度两者定义的。 当二者相等时就是高温等离子体,反之是低温等离子体。相比于普通的化学反应,低温等离子体中的活性粒子活性更强种类更多,因此依赖于此活性粒子发生的化学反应会更加剧烈,更加充分。 现有等离子清洗设备都是通过改变功率、增加清洗时间以及改变压强等方式以 影响清洗效果,针对不同的清洗设备和不同的基片,所采用的清洗工艺也存在着差别,同时在清洗过程中因为缺乏对放电腔体内部等离子特性的测量手段 现有射频等离子体设备只能设定功率,并考察在一定放电功率下设备的清洗效果。而实际清洗效果是和等离子体密度,电子密度等参数直接相关的。 在现有研究手段中,因测试手段缺乏和系统理论尚存在不完善,目前还不能建立起等离子体参数与清洗效果的对应关系。

    32240编辑于 2023-05-25
  • 来自专栏等离子设备的应用

    小型等离子清洗机结构组成

    小型等离子清洗机结构要点 传统的电容耦合式等离子清洗机结构,即内平行极板。 系统由三大部分组成包括真空系统、放电系统和控制系统 在容性耦合等离子产生装置下,电子密度与极板间距成正比例关系,平均电子温度与极板间距成反比关系,其均匀性与极板间距成正比关系即随着间距的增大均匀性变好 卧室电容耦合等离子清洗机,可以直接将工件放在下电极上,但是研究发现,等离子体密度最大区域,是在等离子区域2-8cm 之间,因此可以使用一个高度为3cm的支座,支座的放置也便于工件的取放。 电容耦合式等离子清洗机反应室本身为不锈钢管构成,电容极板位于真空室内, 因为金属本身对于辐射具有很好的屏蔽效果,所以不需要在对装置设置单独的屏蔽 装置,辐射和干扰都非常小,不会对控制系统造成干扰。

    32810编辑于 2023-06-02
  • 来自专栏等离子设备的应用

    等离子清洗机在AFM实验中应用

    通过此刻获得的电压可以换算成粘着力值力-位移曲线和针尖-扫描器的相对位置等离子清洗机 PLUTO-T实验前,微悬臂首先在去离子水中清洗。 而后在等离子清洗机中使用氧等离子体清洗三分钟,等离子体处理之后,样品表面会变得超亲水并拥有非常高的表面能。

    28530编辑于 2023-05-23
  • 来自专栏等离子设备的应用

    等离子清洗机中射频等离子体的工作机理

    在现代科技的推动下,等离子体技术在各个领域中扮演着重要角色。而PLUTO-T型等离子清洗机作为其中的一员,其独特的工作机理使其成为清洗领域的一颗璀璨明星。 PLUTO-T型等离子清洗机采用射频等离子体来进行清洗工作。射频等离子体是一种高能离子化的气体,具有高温、高能的特点。其工作原理基于电离和化学反应的相互作用,通过释放大量能量来清洗物体表面。 具体来说,PLUTO-T型等离子清洗机中的射频等离子体是通过一个射频发生器产生的。该发生器会产生高频电场,将气体离子化并加热,形成高温高能的等离子体。 PLUTO-T型等离子清洗机的工作机理使其在清洗过程中具有高效、彻底的特点。射频等离子体的高能粒子能够深入物体表面,清除微小的污垢和残留物,使清洗效果更加出色。 总而言之,PLUTO-T型等离子清洗机中射频等离子体通过离子轰击和化学反应的双重

    56520编辑于 2023-05-23
  • 来自专栏等离子设备的应用

    等离子清洗机中氧等离子体刻蚀对石墨涂层的性能研究

    在氧等离子体轰击石墨涂层的过程中,基本的反应就是,氧等离子和石墨涂层中的表层C原子发生氧化反应,不论是生成了CO2或者CO,在等离子清洗机的反应腔内,是属于一种真空状态,所以反应的气体就会被抽离真空反应腔 ,而相反各项异性水平刻蚀机制是指的是在同时刻蚀缺陷的情况下,氧等离子体刻蚀会优先寻找下层的缺陷在上层石墨涂层的缺陷被刻蚀的同时氧等离子体会优先寻找下层石墨涂层的缺陷,对于整体的石墨涂层陷刻蚀速率远大于非缺陷处的刻蚀速率 PLUTO-T等离子清洗机处理石墨案例       处理前  样品上贴了一片盖玻片作为阻挡        在经过PLTUO-T等离子清洗机处理之后,我们可以发现相对于处理前,处理后发生了很明显的变化。 ,等离子体的流量,一定程度上可以制备出可控缺陷的石墨涂层。 说明氧等离子体刻蚀石墨涂层这一方法在制备石墨涂层方面有潜在的应用。

    62220编辑于 2023-09-08
  • 等离子清洗机对橡胶模具的研究

    等离子清洗机对橡胶模具的研究本文主要论述了等离子清洗机清洗橡胶制品模具技术进行了工艺研究,构建等离子体清洗实验装置系统和建立清洗质量的评价方法。 等离子体清洗橡胶模具能量祸合作用等离子体清洗橡胶模具主要是利用等离子体束高能粒子的活化作用,产生热冲击、活化分解或小部分燃烧汽化,从而使模具表层橡胶污染物脱离模具表,面达到清洗目的。 清洗层状污染物能量耦合作用当等离子体热源经过时,橡胶模具表而的污染物吸收等离子体激发态粒子的能量,并向基体表面和内部传递热量,从而产生自身特有的能量耦合作用。 清洗层状污染物能量藕合作用当等离子体热源经过时,橡胶模具表面的污染物吸收等离子体激发态粒子的能量,并向基体表面和内部传递热量,从而产生自身特有的能量耦合作用。 为了深入分析等离子体清洗层状致密污染物的原理,这里我们需要对层裂应变进行计算,同时对等离子体与工件间的能量耦合机制进行有限元分析分析。

    21210编辑于 2024-01-26
  • 来自专栏等离子设备的应用

    等离子清洗机中电感耦合和电容耦合

    电感耦合等离子清洗机在小型等离子清洗机的工作原理中,一直有两种工作原理:电容耦合式(不锈钢腔体)和电感耦合式(石英玻璃腔体),针对两种工作方式的差异,我们尝试做进一步的说明电容耦合式电容耦合式等离子体是发展最早 电容耦合式等离子体又称电场耦合式等离子体,其产生机理是在低气压条件下,加在两极板之间的高频电场电离气体,产生稳定的等离子体。 电容耦合有3种工作方式线圈环绕型典型的外电极结构,是应用最早的电感耦合式结构,其特点是结构简单、无电极污染,但由于二次耦合,其耦合效率较低,且等离子均匀性较差(目前多见小型实验室型等离子清洗机)平板同心螺旋线圈平面耦合线圈 多见于高端要求场合,如等离子体刻蚀,等离子体精细去胶等等内电极式结构由于电感线圈位于等离子中,线圈 耦合好,效率高,但电极浸没于等离子体中,在电场作用下受到粒子轰击,线圈尺寸会发生变化,同时容易发生电极溅射 电容耦合式等离子清洗机反应室(真空室)一般采用不锈钢板加工制成,电容极板位于真空室内,金属箱体本身具有很好的屏蔽效果,无需单独考虑屏蔽。

    54430编辑于 2023-05-26
  • 来自专栏等离子设备的应用

    等离子清洗机对 CFRP-铝合金界面粘结性能影响研究

    等离子清洗机对 CFRP 胶接强度的影响基于复合材料胶接接头拉伸试验后的破坏形貌差异,CFRP 胶接接头主要破坏模式可分为界面破坏、内聚破坏、基体破坏以及多种模式共存的混合破坏模式。 因此,在确定合适的等离子体处理距离后,可以适当提高处理速度,以提高等离子体处理效率。等离子清洗机对 CFRP 胶接接头破坏模式的影响CFRP 表面经等离子体处理后,胶接强度明显提高。 等离子体处理可以提高 CFRP 胶接强度,改变胶接接头破坏模式,使 CFRP 基体及胶粘剂性能得到充分利用,且等离子体处理复合材料的胶接性能明显优于丙酮表面清洗。 等离子清洗机对铝合金胶接强度的影响等离子体处理后的胶接接头达到极限载荷后,依然有部分胶粘剂发生内聚破坏,等离子体处理可以使铝合金与胶粘剂粘结界面性能增强,胶粘剂性能在接头破坏过程中得到充分利用。 等离子清洗机对铝合金胶接接头破坏模式的影响铝合金胶接接头破坏模式示意图不同等离子体处理距离、速度下铝合金胶接接头断口形貌等离子体处理可以改善铝合金与胶粘剂的界面粘结性能,减少或避免粘结界面失效(脱粘)的发生

    21010编辑于 2023-09-12
  • 来自专栏等离子设备的应用

    等离子清洗机对 CFRP-铝合金界面粘结性能影响研究2

    CFRP表面经等离子体处理后,胶接强度得到显著提高,然而等离子体处理对胶接强度的影响机制尚不明确。CFRP界面粘结强度主要受表面润湿性、表面粗糙度以及粘结界面的表面化学反应等影响。 本章通过对等离子体处理前后的CFRP表面特性进行表征,包括对CFRP表面润湿性、表面形貌、表面粗糙度以及表面化学组分进行表征,探究等离子体处理对CFRP表面特性的影响规律和影响机制。 因此,在确定合适的等离子体处理距离后,可以适当提高处理速度,以提高等离子体处理效率。 ,从而对胶接性能产生不利影响,因此,为保证等离子体处理的过程中不损伤CFRP表面树脂及纤维,最佳等离子体处理距离为h=10mm。 胶粘剂与被胶接件之间化学键合所形成的分子间作用力(范德华力等)一般比机械互锁形成的作用力更为牢固,因此,等离子体处理对复合材料胶接性能的提升,其主要来源是基于等离子体中的活性粒子对复合材料表面化学基团的活化

    24630编辑于 2023-09-15
  • 来自专栏等离子设备的应用

    等离子体处理对壳聚糖膜表面形貌的影响

    射频等离子清洗机对壳聚糖表面形貌的影响壳聚糖是一种生物衍生的带正电荷多糖,具有优良的生物相容性和降解性能,近年来,由于其优良的成膜性能和良好的光学性能,壳聚糖膜在角膜组织工程及角膜修复材料研究领域得到越来越广泛重视 在此,我们仅以等离子体表面处理对壳聚糖膜表面形貌影响做一些讨论和演绎未经等离子处理的AFM图O2 100W 60S处理后的AFM图片O2 150W 60S处理后的AFM图片100W的等离子体处理壳聚糖膜表面光滑平整 经过氧气等离子体处理后的壳聚糖膜表面AFM图,可以看出为等离子体刻蚀的作用,壳聚糖膜表面变得较为粗糙,表面粗糙度Rms增加为5.252nm。表面粗糙度的适当增加将有利于材料表面细胞的黏附。 ,壳聚糖膜表面等离子体处理的时效性大约为10天。 主要原因是等离子体处理后暴露大气,表面活性自由基与空气中的氧气、水汽等反应是等离子体处理样品表面极性化的主要过程,表面氧含量得到增加。

    26620编辑于 2023-08-08
  • 来自专栏等离子设备的应用

    等离子清洗技术在DCDC混合电路中的应用

    射频等离子清洗技术应用射频等离子清洗技术在DC/DC混合电路生产中有两类应用,第一类主要是去除处理物体表面的外来物层,如沾污层、氧化层等;第二类主要是改善物体表面状态,提高物体表面活性,提高物体表面能等 1.去除背银芯片硫化物使用AP-1000型射频等离子清洗机,氩气作为清洗体,清洗功率200~300W,清洗时间200~300s,气体流量400sccm,经过射频等离子清洗芯片背面后,硫化银及氧化银被去除 由于等离子体在清洗舱内分布较为均匀,可以实现复杂结构及狭小部位的清洗,选择氢气作为清洗气体时,清洗功率200~300W,清洗时间400~600s,气体流量200sccm,经过射频等离子清洗后, 焊料在管壳上浸润性良好 :(1)射频等离子清洗可以去除背银芯片硫化物、金属外壳表面氧化物及厚膜基片上的有机沾污,提升焊接及粘接的可靠性;(2)射频等离子清洗可以提高金属盖表面活性,提升油墨在金属盖板上的浸润性;(3)射频等离子清洗可以提升芯片表 而不当的射频等离子清洗带来的陶瓷厚膜基板渗胶问题可通过静置或高温烘烤以降低厚膜基板表面 活性来解决,MOS器件损伤问题可通过降低清洗功率及清洗时间或采用微波等离子清洗来解决。

    44520编辑于 2023-08-08
  • 论金丝引线键合的影响因素

    2.6 提升产品的可键合性产品的可键合性主要体现在镀层的加工控制、组装过程中的镀层污染控制、键合前的等离子清洗3个方面。 键合前的等离子清洗可以提高键合点的黏接力,增强键合可靠性。等离子清洗机一般有中频等离子清洗机和射频等离子清洗机两种。 中频等离子清洗机单颗离子的能量大,整体密度低,更适合宏观的粗洗;射频等离子清洗机单颗离子的能量和整体密度都相对适中,更适合微观的改性清洗,一般应用于键合前镀层表面的清洗。

    29600编辑于 2024-07-01
  • 来自专栏等离子设备的应用

    等离子清洗工艺在芯片键合前的应用

    等离子清洗工艺在芯片键合前的应用等离子体清洗工艺在IC封装行业中的应用主要在以下几个方面:点胶装片前工件上如果存在污染物,在工件上点的银胶就生成圆球状,大大降低与芯片的粘结性,采用等离子清洗可以增加工件表面的亲水性 物理等离子清洗工艺模式采用的仓体压力较小。物理等离子清洗工艺要求被激发的离子轰击工件表面。 加大等离子体射频功率是增加等离子的离子能量来加强清洗强度。离子能量是活性反应离子进行物理工作的能力。 等离子体清洗模式主流的等离子清洗机有三种类型的电极载物板,用作设备的阳极、阴极以及悬浮极。根据工件的不同,调节电极载物板能够产生两种模式的等离子体,命名为直接等离子体模式和顺流等离子体模式。 等离子清洗对芯片键合前清洗效果的影响经过等离子清洗后,对工件芯片进行接触角测试,试验检测得出:未进行等离子体清洗的工件样品接触角大约在45°~58°;对已经进行过化学等离子体清洗的工件芯片的接触角大约在

    37400编辑于 2023-08-08
  • 光刻胶剥离工具都有哪些及白光干涉仪在光刻图形的测量

    光刻胶剥离工具湿法剥离设备湿法剥离主要借助化学溶液与光刻胶发生反应实现剥离,常用设备包括浸泡槽、喷淋清洗机等。 喷淋清洗机则通过高压喷头将剥离液均匀喷洒在基片表面,使剥离液与光刻胶充分接触,相比浸泡槽,其剥离效率更高,且能减少基片之间的交叉污染,适用于大规模生产。干法剥离设备干法剥离设备以等离子体刻蚀机为代表。 在真空环境下,等离子体刻蚀机通过射频电源激发气体(如氧气、氟基气体等)产生等离子体。等离子体中的活性粒子与光刻胶发生物理轰击或化学反应,将光刻胶分解为挥发性气体排出。

    13410编辑于 2025-05-30
  • 来自专栏芯片工艺技术

    等离子刻蚀技术

    最早报道等离子体刻蚀的技术文献于1973年在日本发表,并很快引起了工业界的重视。 等离子刻蚀的原理可以概括为以下几个步骤: ● 在低压下,反应气体在射频功率的激发下,产生电离并形成等离子体,等离子体是由带电的电子和离子组成,反应腔体中的气体在电子的撞击下,除了转变成离子外,还能吸收能量并形成大量的活性基团 在平行电极等离子体反应腔体中,被刻蚀物是被置于面积较小的电极上,在这种情况,一个直流偏压会在等离子体和该电极间形成,并使带正电的反应气体离子加速撞击被刻蚀物质表面,这种离子轰击可大大加快表面的化学反应, 自从最初的平行电极型等离子体反应室被用于芯片制造以来,随着芯片尺寸的不断扩大及图形尺寸的不断减小,平行电极等离子刻蚀设备在过去20年中已得到了很大的改进,虽然其原理还是一样,但最大的改进在反应腔室周围加上磁场 ICP反应室是在RIE反应室的上方加置线圈状的电极,并通过电感耦合达到增强等离子密度的效果。

    1.3K20编辑于 2022-06-08
  • 来自专栏mysql

    hhdb数据库介绍(8-4)

    以下将分别介绍单计算节点、HA(主备)模式的计算节点集群手动部署方法,负载均衡模式的多计算节点集群推荐使用“集群部署”功能自动部署。

    14210编辑于 2024-12-23
  • 来自专栏芯智讯

    中国电科实现国产离子注入机28纳米工艺全覆盖!累计出货百台设备流片2000万片!

    与之对应的七大类的生产设备包括:扩散炉、光刻机、刻蚀机、离子注入机、薄膜沉积设备(包括PECVD、LPCVD、ALD等)、化学机械抛光机、清洗机。 离子注入机是芯片制造中的关键装备。 在此之前,电科装备在离子注入机领域已连续突破中束流、大束流、特种应用及第三代半导体等离子注入机产品研发及产业化难题,产品广泛服务于全球知名芯片制造企业。 2021年3月,中国电子科技集团对外宣布,电科装备攻克系列“卡脖子”技术,已成功实现离子注入机全谱系产品国产化,包括中束流、大束流、高能、特种应用及第三代半导体等离子注入机,工艺段覆盖至28nm,为我国芯片制造产业链补上重要一环

    41040编辑于 2023-08-09
  • 材料本质与等离子体作用的奥秘

    为什么同样的等离子体环境,对不同的材料会产生截然不同的效果? 答案深植于材料本身的根本属性——它们的材料类型(金属、聚合物、陶瓷、玻璃、复合材料)决定了它们如何与等离子体“互动”。 不同材料的等离子体响应:本质决定命运等离子体技术利用高能粒子环境改变材料表面,但其效果并非“一刀切”。材料本身的根本属性——导电导热性、化学键强度和热稳定性——才是决定其如何响应等离子体的关键。 等离子体作用:高能粒子轰击表面。高导热性快速分散能量,保护材料深层。表面原子易被激发,与等离子体中活性氧结合,形成氧化膜。这层氧化膜是“双刃剑”:它可以是保护层(钝化),也可能被持续刻蚀移除。 等离子体作用:强大的化学键使其对常规等离子体高度惰性,刻蚀极其缓慢。若要有效加工(如刻蚀微结构)或改善粘接:必须使用强反应性气体(如含氟气体 CF₄, SF₆)。 核心启示:理解材料是驾驭等离子体的关键等离子体技术并非“万能钥匙”,其效果高度依赖于被处理材料的内在属性。

    20810编辑于 2025-08-21
  • 来自专栏PCBA保护

    PECVD等离子增强化学沉积技术

    原理(how)在低温真空腔体内,等离子激发反应气体,在基材(被保护的PCBA)表面开启化学反应,生成纳米级厚度的网状保护膜(防泼溅、防潮、疏水、疏油,防腐蚀、防盐雾、防汗液)。 实现等离子超薄纳米涂层: 需要等离子真空设备+配方药水,此设备占地面积小,一键式自动操作(产品置于设备腔体0.5~1小时左右),超安静运行。

    38230编辑于 2023-03-06
  • 不同材料对等离子体设备的影响机制

    它们的根本差异——导电性、导热性、化学键类型与热稳定性——决定了其内在"性格",也预设了当它们遭遇等离子体时,将上演怎样截然不同的"蜕变"。 二、等离子体:可编程的"能量刻刀"等离子体非蛮力破坏者,而是通过精准调控(气体、功率、压力、时间),针对材料特性激活四大核心响应机制:1. 陶瓷/硅:物理溅射为主,强氟基等离子体实现化学刻蚀。 应用点睛:半导体芯片上雕刻纳米电路(比发丝细千倍),MEMS器件精密加工,医疗器械超清洁表面。2.   三、复合材料:"粘接前奏曲"等离子体技术直击复合材料核心痛点——界面强化:1.深度净化:彻底清除纤维与树脂表面的油脂、脱模剂等污染物。 等离子体技术,正是开启这扇未来之门的金钥匙。

    12010编辑于 2025-08-20
领券