首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用R语言进行多项式回归、非线性回归模型曲线拟合

对于线性关系,我们可以进行简单的线性回归。对于其他关系,我们可以尝试拟合一条曲线。

相关视频

曲线拟合是构建一条曲线或数学函数的过程,它对一系列数据点具有最佳的拟合效果。

使用示例数据集

看起来我们可以拟合一条曲线。

我们可以看到每条曲线的拟合程度。

我们可以使用summary()函数对拟合结果进行更详细的统计。

使用不同多项式R平方的总结。

我们可以用 "方差分析 "来比较不同的模型。

Pr(>F)值是拒绝无效假设的概率,即一个模型不比另一个模型更适合。我们有非常显著的P值,所以我们可以拒绝无效假设,即fit2比fit提供了更好的拟合。

我们还可以创建一个反映多项式方程的函数。

从三次多项式推算出来的数值与原始数值有很好的拟合,我们可以从R-squared值中得知。

结论

对于非线性曲线拟合,我们可以使用lm()和poly()函数,这也为多项式函数对数据集的拟合程度提供了有用的统计数据。我们还可以使用方差分析测试来评估不同模型之间的对比程度。从模型中可以定义一个反映多项式函数的函数,它可以用来推算因变量。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20221011A05AHD00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券