首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

简单线性回归实例分析

作者:穿羽绒服的芒果 审核:X 封面:自己想把

前面讲了异常值的判定和处理方法以及简单线性回归的四个条件,不知大家掌握得怎么样了呢?今天小编给大家带来的是简单线性回归的实例分析,干货满满哦~

实例分析

对数据进行简单线性回归分析常按照以下步骤:

1

根据研究目的确定因变量和自变量

现研究某服装店销售额和客流量的关系,销售额为因变量,客流量为自变量,共计36条数据。

2

判断有无异常值

判断方法:⑴通过绘制散点图直观观察;⑵亦可通过线性回归的【统计】→【个案诊断】→【所有个案】进行分析,若标准残差超过[-3,3],则可视为异常值。

Step1【分析】→【回归】→【线性】

Step2【统计】→【个案诊断】→【所有个案】

结果展示

结果:所有个案的标准残差均在[-3,3]之间,无异常值。

3

判断数据是否满足简单线性回归假设条件

⑴线性(linear)因变量与自变量呈线性关系,通过绘制散点图判断;

Step1【图形】→【旧对话框】→【散点/点状】→【简单分布】→【定义】

Step2将销售额放入Y轴,将客流量放入X轴→【确定】

结果展示

结果:销售额与客流量呈线性关系。

⑵独立性(independent)任意两个观察值之间相互独立,通过线性回归的【统计】→【德宾-沃森】进行分析,一般来说Durbin-Waston检验值分布在0-4之间,越接近2,观察值相互独立的可能性越大。

Step1【分析】→【回归】→【线性】

Step2【统计】→【德宾-沃森】

结果展示

⑶正态性(normal)随机误差近似正态性,可通过直方图或者P-P图判断残差是否符合正态分布;

Step1【分析】→【回归】→【线性】

Step2【绘图】→【直方图】、【正态概率图】

结果展示

结果近似正态性

⑷方差齐性(equal variance)残差满足方差齐性

Step1【分析】→【回归】→【线性】

Step2【绘图】→将ZRESID(标准化残差)选入Y轴,将ZPRED(标准化预测值)选入X轴→勾选“产生所有部分图”,即可得到残差随着估计值的变化趋势,若所有点均匀分布于直线Y=0的两侧,则可认为方差齐性。

结果展示

结果:方差齐性

4

估计回归模型参数,建立模型

Step1【分析】→【回归】→【线性】

Step2 选择因变量和自变量,【统计】选项卡中“回归系数”选择“估计”,选择“模型拟合度”,单击“继续”,单击“确定”。

结果展示

回归模型:Y=27.339X+398.269

该表格展示了自变量对因变量的解释程度,即模型拟合程度,可用R^2(决定系数)来衡量。决定系数取值在0-1之间,R^2越大模型拟合程度越高。本案例中R^2=0.693,即客流量对销售额的解释程度为69.3%,解释程度较高。

5

对模型进行假设检验

对回归模型进行假设检验一般使用方差分析法,对回归系数进行假设检验一般使用t检验方法。

方差分析结果:F=76.681,p

t检验结果:回归系数和常数项的p值均小于0.05,具有统计学意义。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20180531G0B8OX00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券