前面我们看了转换算子,接下来了解一下行动算子
1)reduce
函数签名
def reduce(f: (T, T) => T): T
函数说明
聚集 RDD 中的所有元素,先聚合分区内数据,再聚合分区间数据
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 聚合数据
val reduceResult: Int = rdd.reduce(_+_)
2)collect
函数签名
def collect(): Array[T]
函数说明
在驱动程序中,以数组 Array 的形式返回数据集的所有元素
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 收集数据到 Driver
rdd.collect().foreach(println)
3)count
函数签名
def count(): Long
函数说明
返回 RDD 中元素的个数
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 返回 RDD 中元素的个数
val countResult: Long = rdd.count()
4)first
函数签名
def first(): T
函数说明
返回 RDD 中的第一个元素
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 返回 RDD 中元素的个数
val firstResult: Int = rdd.first()
println(firstResult)
5)take
函数签名
def take(num: Int): Array[T]
函数说明
返回一个由 RDD 的前 n 个元素组成的数组
vval rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 返回 RDD 中元素的个数
val takeResult: Array[Int] = rdd.take(2)
println(takeResult.mkString(","))
6)takeOrdered
函数签名
def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T]
函数说明
返回该 RDD 排序后的前 n 个元素组成的数组
val rdd: RDD[Int] = sc.makeRDD(List(1,3,2,4))
// 返回 RDD 中元素的个数
val result: Array[Int] = rdd.takeOrdered(2)
7)aggregate
函数签名
def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U
函数说明
分区的数据通过初始值和分区内的数据进行聚合,然后再和初始值进行分区间的数据聚合
val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4), 8)
// 将该 RDD 所有元素相加得到结果
//val result: Int = rdd.aggregate(0)(_ + _, _ + _)
//分区之间也要参加运算,
val result: Int = rdd.aggregate(10)(_ + _, _ + _)
8)fold
函数签名
def fold(zeroValue: T)(op: (T, T) => T): T
函数说明
折叠操作,aggregate 的简化版操作
val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))
val foldResult: Int = rdd.fold(0)(_+_)
9)countByKey
函数签名
def countByKey(): Map[K, Long]
函数说明
统计每种 key 的个数
val rdd: RDD[(Int, String)] = sc.makeRDD(List((1, "a"), (1, "a"), (1, "a"), (2,
"b"), (3, "c"), (3, "c")))
// 统计每种 key 的个数
val result: collection.Map[Int, Long] = rdd.countByKey()
10)save 相关算子
函数签名
def saveAsTextFile(path: String): Unit
def saveAsObjectFile(path: String): Unit
def saveAsSequenceFile(
path: String,
codec: Option[Class[_
函数说明
将数据保存到不同格式的文件中
// 保存成 Text 文件
rdd.saveAsTextFile("output")
// 序列化成对象保存到文件
rdd.saveAsObjectFile("output1")
// 保存成 Sequencefile 文件
rdd.map((_,1)).saveAsSequenceFile("output2")
11)
foreach
函数签名
def foreach(f: T => Unit): Unit = withScope {
val cleanF = sc.clean(f)
sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
}
函数说明
分布式遍历 RDD 中的每一个元素,调用指定函数
val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 收集后打印,其实是Driver端内存集合的循环遍历方法
rdd.map(num=>num).collect().foreach(println)
println("****************")
// 分布式打印,是Executor端内存数据打印
rdd.foreach(println)
领取专属 10元无门槛券
私享最新 技术干货