早在三千多前,人们就已经开始使用圆周率。古人发现,无论是多大的圆,它的周长和直径之比总是一个固定的常数,这就是圆周率。但圆周率一直没有被精确计算出来,人们想尽一切办法来提高计算圆周率的精度。
为什么我们的电脑能够在断断数年之内,性能有飞跃性的进步?这完全靠“算法”在支撑。把诸多的算法效果叠加起来,就能实现在同等的硬件条件下,同步进行更多计算的目的。所以,你可以把针对圆周率的“算法”的开发,简单理解成电子科技工程对“芯片”的开发。也正因如此,这些“算法”才是保密的。
圆周率的计算还可以作为检验计算机计算能力的一种手段。如果有两台电脑需要比赛计算能力,那就更好办了。同时启动两台电脑,开始计算,速度快慢一目了然。另外,圆周率的计算也是检验计算机性能的有效手段,这样可以检验出计算机是否出错,能不能借助圆周率编写程序,等等。所以,圆周率对于计算机来说,有着 特殊的存在意义。
从应用层面来看,这个庞大的数值确实没有任何意义,但我们可以发现,圆周率从3开始到越来越接近我们现代数学计算的圆周率数值的过程,就是数学工具不断的进步,从早期的周长/直径到割圆术,再到无穷级数,再到拉马努金的计算公式,各位会发现圆周率计算的收敛速度越来越快,当然还有更快的迭代算法,这表示什么?我们发现这个世界的工具:数学一直在进步!当然到了1949年之后这个任务从手工转换到了计算机手中,圆桌率的存在为我们的计算机算法做出了不朽的贡献,促使着计算机技术不断进步!
领取专属 10元无门槛券
私享最新 技术干货