首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

顺序表数据结构在python中的应用

数据结构不仅仅指的数据值在逻辑上的结构,更有在存储空间上的位置结构,顺序表,故名思意是有一定顺序的数据结构。

顺序表最基本模型如图:

对于基本布局顺序表而言,它存储相同单元大小并且在内存地址上连续的数据,逻辑地址是其元素的逻辑顺序,物理地址第一个元素的内存地址加上离第一个元素的距离,如:e1物理地址是l0,那么e2的物理地址是e1的地址加上e1所占用的大小c,以此类推,en的物理地址是l0+(n-1)*c。

这种基本布局出现了一个问题,如果其中的元素大小不统一,那么岂不是要用最大存储单元作为基本单位,非常浪费空间,因此出现了外置顺序表,它是将元素的索引以相同单元大小连续存放,索引记录对应数据在内存上的地址,那么我们可以通过基本布局的方式去找到索引,再根据索引找到数据。

在熟悉了顺序表的基本模型后,我们再看顺表的结构,如图所示:

实际的顺序表包含两部分,一部分是顺序表的记录信息块(含顺序表容量、元素个数),一部分是数据块,这两部放在一起是一体式结构,如果分离通过索引连接是分离式结构。

顺序表含有容量和容量的使用情况信息,那么很容易就实现扩容,其扩容方式有两种:一种是频繁的固定扩容,即每次增加固定单位的容量,因此会平凡扩容;另一种是倍增的扩容,即按照2、4、8、16这种方式来扩,这样扩容频率低,但可能造成浪费。

在python中list和tuple都是顺序表结构,list是动态顺序表,支持内部结构变化如增加或者减少元素,而tupele并不支持结构的改变,其他性能和list一致。

既然我们知道了python中使用最频繁的list内在结构,那我们就应该明白append是在顺序表末尾增加一个元素,他的时间复杂度是O(1),而insert插入函数是将插入位置之后的元素依次向下挪动一个位置,复杂度是O(n);同理删除一个元素,当删除最后一个位置的元素pop()只是删除循序表的最后一个位置元素,如果是删除指定元素,那么该元素其后的元素依次挪动一个位置其时间复杂度为O(n);

这便是数据结构的意义,它对python性能的提升有指导性的作用。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20190402A0O9PD00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券