[1]Spline Filters For End-to-End Deep Learning
Randall Balestriero et al.
Rice University
http://proceedings.mlr.press/v80/balestriero18a/balestriero18a.pdf
这篇论文的贡献在于
各方法效果对比如下
代码地址
https://github.com/RandallBalestriero/SplineWavelet
[2]Predict and Constrain: Modeling Cardinality in Deep Structured Prediction
Nataly Brukhim
Tel Aviv University
http://proceedings.mlr.press/v80/brukhim18a/brukhim18a.pdf
模型结构示例如下
映射算法伪代码如下
各算法效果对比如下
其中上表中的部分算法解释如下
代码地址
https://github.com/Natalybr/predict_and_constrain
[3]Learning Deep ResNet Blocks Sequentially using Boosting Theory
Furong Huang et al.
University of Maryland, Princeton University, Microsoft Research.
http://proceedings.mlr.press/v80/huang18b/huang18b.pdf
ResNet网络结构如下
BoostResNet的算法伪代码如下
算法效果对比如下
[4]Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learningwith Trajectory Embeddings
John D. Co-Reyes et al.
University of California, Berkeley; Google Brain
http://proceedings.mlr.press/v80/co-reyes18a/co-reyes18a.pdf
状态及策略解码图示如下
SeCTAR(self-consistent trajectory autoencoder)图示如下
算法伪代码如下
代码地址
https://github.com/wyndwarrior/Sectar
[5]Deep Reinforcement Learning in Continuous Action Spaces:a Case Study in the Game of Simulated Curling
Kyowoon Lee et al.
Ulsan National Institute of Science and Technology, Korea University
http://proceedings.mlr.press/v80/lee18b/lee18b.pdf
网络结构如下
算法伪代码如下
代码地址
https://github.com/leekwoon/KR-DL-UCT
[6]Dropout Training, Data-dependent Regularization, and Generalization Bounds
Wenlong Mou et al.
University of California, Berkeley; University of Wisconsin, Madison; PekingUniversity
http://proceedings.mlr.press/v80/mou18a/mou18a.pdf
算法伪代码如下
各方法效果对比如下
您可能感兴趣
领取专属 10元无门槛券
私享最新 技术干货