首页
学习
活动
专区
圈层
工具
发布

Pytorch轻松学-构建浅层神经网络

关键知识点

前面我们刚刚组队完毕,更新了第一篇,我说我会坚持写下去,这个是我的第二篇,使用pytorch实现简单神经网络完成手写数字识别。这个是所有深度学习框架入门标配的例子,但是从这个例子上我们可以学到pytorch的很多基础知识点,我罗列一下,大致有如下:

1.开始用torch.nn包里面的函数搭建网络 2.模型保存为pt文件与加载调用 3.Torchvision.transofrms来做数据预处理 4.DataLoader简单调用处理数据集

只有理解和看清以上四点才算入门了这个例子。

数据集:

Mnist数据集,数字为0~9、大小为28x28的灰度图像。

加载数据集代码实现:

代码语言:javascript
复制

train_ts = tv.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
 test_ts = tv.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
 train_dl = DataLoader(train_ts, batch_size=32, shuffle=True, drop_last=False)
 test_dl = DataLoader(test_ts, batch_size=64, shuffle=True, drop_last=False)

预处理数据方式

代码语言:javascript
复制

transform = tv.transforms.Compose(
[tv.transforms.ToTensor(),
tv.transforms.Normalize((0.5,), (0.5,)),
])

其中

Totensor表示把灰度图像素值从0~255转化为0~1之间

Normalize表示对输入的减去0.5, 除以0.5

网络结构如下:

输入层:784个神经元

隐藏层:100个神经元

输出层:10个神经元

代码语言:javascript
复制
model = t.nn.Sequential(
     t.nn.Linear(784, 100),
     t.nn.ReLU(),
     t.nn.Linear(100, 10),
     t.nn.LogSoftmax(dim=1)
 )

定义损失函数与优化函数

代码语言:javascript
复制
loss_fn = t.nn.NLLLoss(reduction="mean")
optimizer = t.optim.Adam(model.parameters(), lr=1e-3)

开启训练

代码语言:javascript
复制
for s in range(5):
    print("run in step : %d"%s)
    for i, (x_train, y_train) in enumerate(train_dl):
        x_train = x_train.view(x_train.shape[0], -1)
        y_pred = model(x_train)
        train_loss = loss_fn(y_pred, y_train)
        if (i + 1) % 100 == 0:
            print(i + 1, train_loss.item())
        model.zero_grad()
        train_loss.backward()
        optimizer.step()

测试模型准确率

代码语言:javascript
复制
total = 0;
correct_count = 0
for test_images, test_labels in test_dl:
    for i in range(len(test_labels)):
        image = test_images[i].view(1, 784)
        with t.no_grad():
            pred_labels = model(image)
        plabels = t.exp(pred_labels)
        probs = list(plabels.numpy()[0])
        pred_label = probs.index(max(probs))
        true_label = test_labels.numpy()[i]
        if pred_label == true_label:
            correct_count += 1
        total += 1

打印准确率与保存模型

代码语言:javascript
复制
print("total acc : %.2f\n"%(correct_count / total)) t.save(model, './nn_mnist_model.pt')

完整演示代码

代码语言:javascript
复制
import torch as t
from torch.utils.data import DataLoader
import torchvision as tv

transform = tv.transforms.Compose([tv.transforms.ToTensor(),
                                  tv.transforms.Normalize((0.5,), (0.5,)),
                             ])

train_ts = tv.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_ts = tv.datasets.MNIST(root='./data', train=False, download=True, transform=transform)
train_dl = DataLoader(train_ts, batch_size=32, shuffle=True, drop_last=False)
test_dl = DataLoader(test_ts, batch_size=64, shuffle=True, drop_last=False)

model = t.nn.Sequential(
   t.nn.Linear(784, 100),
   t.nn.ReLU(),
   t.nn.Linear(100, 10),
   t.nn.LogSoftmax(dim=1)
)

loss_fn = t.nn.NLLLoss(reduction="mean")
optimizer = t.optim.Adam(model.parameters(), lr=1e-3)

for s in range(5):
   print("run in step : %d"%s)
   for i, (x_train, y_train) in enumerate(train_dl):
       x_train = x_train.view(x_train.shape[0], -1)
       y_pred = model(x_train)
       train_loss = loss_fn(y_pred, y_train)
       if (i + 1) % 100 == 0:
           print(i + 1, train_loss.item())
       model.zero_grad()
       train_loss.backward()
       optimizer.step()

total = 0;
correct_count = 0
for test_images, test_labels in test_dl:
   for i in range(len(test_labels)):
       image = test_images[i].view(1, 784)
       with t.no_grad():
           pred_labels = model(image)
       plabels = t.exp(pred_labels)
       probs = list(plabels.numpy()[0])
       pred_label = probs.index(max(probs))
       true_label = test_labels.numpy()[i]
       if pred_label == true_label:
           correct_count += 1
       total += 1
print("total acc : %.2f\n"%(correct_count / total))
t.save(model, './nn_mnist_model.pt')

运行结果:

举报
领券